Design and Optimization of Pressurized Toroidal LPG Fuel Tanks with Variable Section

Assoc. Prof. PhD. Eng. Mihai ȚĂLU¹, Assoc. Prof. PhD. Eng. Ștefan ȚĂLU²*

¹ University of Craiova, Faculty of Mechanics, Department of Applied Mechanics and Civil Engineering, Calea București Street, no. 107, 200512 Craiova, Dolj county, Romania. E-mail: mihai_talu@yahoo.com
² Technical University of Cluj-Napoca, The Directorate of Research, Development and Innovation Management (DMCDI), Constantin Daicoviciu Street, no. 15, Cluj-Napoca, 400020, Cluj county, Romania. Corresponding author* e-mail: stefan_ta@yahoo.com

Abstract: This study addresses the design and optimization of the pressurized toroidal LPG fuel tanks with variable section used in automotive industry based on the finite element analysis (FEA) approaches, to model both thermal and mechanical processing conditions. To define specific key performance indicators and to determine the optimal form of toroidal LPG fuel tank with the minimum stress state and linear deformation was applied a mathematical and mechanical foundation for the design and optimization. Computer aided investigations are carried out using 3D models done in the AutoCAD Autodesk 2017 software, which were imported to SolidWorks 2017 software for analysis and can offer an important reference for the design of toroidal LPG fuel tanks.

Keywords: Automotive industry, industrial engineering design, optimization methods, pressurized toroidal LPG fuel tank

1. Introduction

During the past decades, the computer aided engineering design methods to produce pressurized fuel tanks in the automotive industry [1-3] have been developed in a variety of directions to improve vehicle’s performance [4-6]. The storage fuel tanks, made from aluminum alloys or various types of steel, are used in the automotive industry for safely storing fuel: compressed natural gas (CNG) or liquefied petroleum gas (LPG) [7-12]. The design, construction, installation, testing and monitoring requirements of the storage fuel tanks (to maintain structural integrity at high pressures) are bounded and regulated by various codes and standards [13-15].

The design procedure of the fuel tanks involves various assumptions, supershapes design variables [16, 17], specific structure parameters [14], design constraints [15], computer tools [18-23], numerical computational methods [24-26], CAD visualization techniques [27-34], test data and experimental data, that permit to obtain an optimal product with a low structural weight and a high structural performance.

The pressurized toroidal LPG fuel tanks have been recognized as a volumetrically efficient storage solution that can reduce final product mass, while improving storage efficiencies [14, 15]. In our study, a finite element analysis of pressurized toroidal LPG fuel tank to meet safety standards and optimization was conducted considering specific geometry and structure parameters.

2. Design methodology

In our study, optimal design of toroidal cross-sectional profiles (considering shape and thickness variation) in order to reduce stress non-uniformity is performed.

2.1 Basic geometry of toroidal surfaces

Let’s consider the surface generated by revolving of a closed generating curve C₀ along a guiding curve C₁, being tangent in the movement on a second internal curve C₂, as shown in fig. 1a. The curve C₀ (that generates the cross-section) is located in a vertical plane, whereas the reference curves C₁ and C₂ (that determine the variation in the cross-sectional dimensions) are coplanar and situated in the horizontal plane.
An example of the manufactured product with the apparatus mounted on the tank that permit an easy access to the filling or drainage connections of fuel tank is shown in fig. 1c.

Fig. 1. a) The ½ section of a toroidal tank; b) The model of a toroidal tank; c) The tank constructive solution

The graphical representations of toroidal symmetrical parts in respect with the symmetrical planes is shown in orthogonal views in fig. 2a and 2b, while the axonometric representation is shown in fig. 2c.

Fig. 2. a) and b) The orthogonal views with the symmetry horizontal plane; c) The axonometric representation of the tank constructive solution

The generating curves and the directories curves are closed curves that do not intersect on themselves, such as: ellipses, circles, triangles, rectangles, etc. Some graphical examples of toroids with variable section are shown in figs. 3 and 4.

Fig. 3. The axonometric representation of a ½ toroid sectioned generated by: a) \(C_G \) – ellipse and \(C_D \) – circle; b) \(C_G \) – square and \(C_D \) – circle; c) \(C_G \) – hexagon and \(C_D \) – circle
Fig. 4. The axonometric representation of a ½ toroid sectioned generated by: a) C_G – circle and C_D – ellipse; b) C_G – square and C_D – ellipse; c) C_G – hexagon and C_D - ellipse

2.2 The geometrical model selected for numerical analysis

The geometrical model selected for numerical analysis is shown in fig. 5a (C_G – ellipse and C_D – circle), with next numerical values for the diameters of circles: C_{D1} and C_{D2} ($C_{D1} = 300$ mm and $C_{D1} = 130$ mm). The eccentricity of the curves: C_{D1} and C_{D2} has the value of $e = 25$ mm.

The axonometric isometric view of the parameterized geometrical model (non-sectioned and sectioned to $\frac{3}{4}$ and $\frac{1}{2}$ of the initial model, as a consequence of the tank constructive symmetry) is shown in fig. 5.

Fig. 5. The geometrical model: a) non-sectioned; b) sectioned at $\frac{3}{4}$; c) sectioned at $\frac{1}{2}$

The modeling was done in the AutoCAD Autodesk 2017 software [35] and the optimization analysis to ensure quality, performance, and safety was performed with SolidWorks 2017 software [36] with the: Static, Thermal and Design Study modules.

The specified surfaces to which the constraints and restrictions are applied are shown in fig. 6.

Fig. 6. The geometrical model at $\frac{1}{4}$ with the specified surfaces

The design data used in this analysis are:
- the maximum static hydraulic pressure: $p_{\text{max}} = 3$ N/mm2 applied to the surface S_3;
- the working temperature between the limits: $T = -30$ $^\circ$C to $T = 60$ $^\circ$C applied to the surface S_4;
- the symmetry on surfaces: S_1 and S_2;
- the fixed surfaces located on the legs support on S_5 (shown in Fig. 5b);
- the execution material for tank is AISI 4340 laminated steel;
- the exploitation time of tank is: $n_a = 20$ years;
- the corrosion velocity of material: $v_c = 0.09$ mm/year.
The optimal design issue here refers to the non-linear constrained optimization and involves minimizing the structural weight \(W \) (associated with the cover thickness \(s = 0.5 \ldots 3 \text{ mm} \)), subjected to the non-linear design constraints (the maximum Von Mises stress must be less than or equal to the admissible traction value of the material, \(\sigma_{\text{rez}} \leq \sigma_a = 710 \text{ N/mm}^2 \)).

Applying the numerical optimization procedure for \(T = -30 \circ C \), the following values were obtained: thickness \(s = 0.9 \text{ mm} \); the maximum Von Mises stress \(\sigma_{\text{rez. max}} = 703.073 \text{ N/mm}^2 \) and the linear deformation \(u_{\text{max}} = 0.533 \text{ mm} \).

The graphs of Von Mises stress and linear deformation distribution computed for \(T = -30 \circ C \) are shown in fig. 7.

![Fig. 7. The graphs of: I) Von Mises stress distribution: a) non-sectioned model and b) sectioned model; II) linear deformation distribution: c) non-sectioned model and d) sectioned model](image)

The optimal thickness is corrected considering the influence of the corrosion phenomenon and the negative tolerance of the metal sheet, using the following formula [10]:

\[
s_{\text{real}} = s_{\text{opt}} + \Delta s_c + \Delta s_T + \Delta s_{\text{am}} = s_{\text{opt}} + v_c \cdot n_a + \text{abs}(A_i) + 0.1 \cdot s \tag{1}
\]

where:
- \(\Delta s_c \), the additional thickness used to compensate the loss of thickness due to the corrosion process;
- \(\Delta s_T \), the additional thickness used to compensate the loss due to the negative tolerance of the execution of laminate metal sheet;
- \(v_c \), the corrosion velocity of the metal sheet, \(v_c = 0.08 \text{ mm/year} \);
- \(n_a \), the number of years of exploitation, \(n_a = 20 \text{ years} \);
- \(A_i \), the negative tolerance of the laminate sheet, \(A_i = -0.6 \text{ mm} \);
- \(\Delta s_{\text{am}} = 0.1 \cdot s \), the additional thickness used to compensate the thinning of wall into the embossing process, \(\Delta s_{\text{am}} = 0.4 \text{ mm} \).

By substituting the numerical values, the minimum thickness of the laminate sheet has the following value:

\[
s_{\text{real min}} = 0.9 + 0.09 \cdot 20 + \text{abs}(-0.6) + 0.1 \cdot 4 = 3.7 \text{ mm} \tag{2}
\]

For the execution, we choose a laminate sheet of AISI 4340 steel that has a thickness of \(s = 4 \pm 0.25 -0.6 \text{ mm} \).
2.3 Three-dimensional stress and strain analysis

In these analyses, the following hypothesis has been applied for the formulation of stresses and strains: a) the 3-D model is subjected to axisymmetric loading and keeps symmetry before and after deformation.

For \(n_a = 0 \) years and temperature \(T = -30^\circ C \), the numerical value of pressure \(p = 13.68 \text{ N/mm}^2 \) and the corresponding graphs of Von Mises stress distribution and linear deformation distribution are shown in fig. 8.

![Graphs of Von Mises stress distribution and linear deformation distribution](image1)

Fig. 8. The graphs of: a) Von Mises stress distribution; b) linear deformation distribution; both computed for \(p_{\text{max}} \), \(T = -30^\circ C \) and \(n_a = 0 \) years.

The graphs of Von Mises stress distribution and linear deformation distribution (computed for explosion pressure, \(T = -30^\circ C \)) were shown on the sectioned model at \(\frac{1}{2} \) in figures 9b and 9d and in figures 9a and 9c for the entire model. For \(n_a = 0 \) years and \(T = -30^\circ C \), the computed tank explosion pressure is \(p = 21.65 \text{ N/mm}^2 \) and the maximum linear deformation is \(u_{\text{max}} = 0.855 \text{ mm} \).

![Graphs of Von Mises stress distribution and linear deformation distribution](image2)

Fig. 9. The graphs of: I) Von Mises stress distribution: a) non-sectioned model and b) sectioned model; II) linear deformation distribution: c) non-sectioned model and d) sectioned model; both computed for the explosion pressure and \(T = -30^\circ C \).

It can be revealed that the explosion pressure is greater by 7.21 times than the maximum test pressure of the fuel tank.

The numerical values of state of stress and linear deformation distribution are given in Table 1.
Table 1: The Von Mises stress and linear deformation of geometrical model

<table>
<thead>
<tr>
<th>No. of years</th>
<th>s [MPa]</th>
<th>T [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-30 °C</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>212.57</td>
</tr>
<tr>
<td>u [mm]</td>
<td>0.1073</td>
<td>0.1112</td>
</tr>
<tr>
<td>5</td>
<td>3.55</td>
<td>231.19</td>
</tr>
<tr>
<td>u [mm]</td>
<td>0.123</td>
<td>0.127</td>
</tr>
<tr>
<td>10</td>
<td>3.1</td>
<td>235.66</td>
</tr>
<tr>
<td>u [mm]</td>
<td>0.145</td>
<td>0.149</td>
</tr>
<tr>
<td>15</td>
<td>2.65</td>
<td>282.65</td>
</tr>
<tr>
<td>u [mm]</td>
<td>0.177</td>
<td>0.182</td>
</tr>
<tr>
<td>20</td>
<td>1.2</td>
<td>550.48</td>
</tr>
<tr>
<td>u [mm]</td>
<td>0.406</td>
<td>0.412</td>
</tr>
<tr>
<td>Optimal</td>
<td>0.9</td>
<td>703.07</td>
</tr>
<tr>
<td>u [mm]</td>
<td>0.533</td>
<td>0.538</td>
</tr>
</tbody>
</table>

The graphical representations of Von Mises stress $\sigma(s, T)$ and the linear deformation, $u(s, T)$ as specified in Table 1, are shown in figures 10 and 11.

Fig. 10. The graph of Von Mises stress $\sigma(s, T)$
Fig. 11. The graph of linear deformation $u(s, T)$

The graphs of Von Mises stress (for $n_a = 0$ years and $n_a = 20$ years) is shown in fig. 12 and 13 with the corresponding the laws of stress variation computed by polynomial interpolation.

Fig. 12. The graph of Von Mises stress at $n_a = 0$ years
Fig. 13. The graph of Von Mises stress at $n_a = 20$ years

The laws of stress variation computed by polynomial interpolation are given in Table 2.
Table 2: The laws of stress variation computed by polynomial interpolation

<table>
<thead>
<tr>
<th>n_a [years]</th>
<th>s [mm]</th>
<th>$\sigma(t)$ [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>$\sigma(t) = 0.0253 \cdot T^2 - 0.867 \cdot T + 163.88$</td>
</tr>
<tr>
<td>5</td>
<td>3.55</td>
<td>$\sigma(t) = 2 \cdot 10^{-7} \cdot T^5 + 6 \cdot 10^{-6} \cdot T^4 - 0.0003 \cdot T^3 + 0.0153 \cdot T^2 - 0.9889 \cdot T + 183.27$</td>
</tr>
<tr>
<td>10</td>
<td>3.1</td>
<td>$\sigma(t) = -2 \cdot 10^{-8} \cdot T^7 + 6 \cdot 10^{-6} \cdot T^4 + 0.0002 \cdot T^3 + 0.0013 \cdot T^2 - 0.9278 \cdot T + 207.79$</td>
</tr>
<tr>
<td>15</td>
<td>2.65</td>
<td>$\sigma(t) = -2 \cdot 10^{-7} \cdot T^5 + 2 \cdot 10^{-5} \cdot T^4 + 0.0003 \cdot T^3 - 0.0038 \cdot T^2 - 1.1523 \cdot T + 242.06$</td>
</tr>
<tr>
<td>20</td>
<td>1.2</td>
<td>$\sigma(t) = -1 \cdot 10^{-6} \cdot T^5 - 3 \cdot 10^{-6} \cdot T^4 + 0.0019 \cdot T^3 + 0.0212 \cdot T^2 - 1.8863 \cdot T + 497.84$</td>
</tr>
</tbody>
</table>

The graphs of linear deformations (for $n_a = 0$ years and $n_a = 20$ years) is shown in fig. 14 and 15 with the corresponding the laws of linear deformations variation computed by polynomial interpolation.

Table 3: The laws of linear deformations variation computed by polynomial interpolation

<table>
<thead>
<tr>
<th>n_a [years]</th>
<th>s [mm]</th>
<th>$\sigma(t)$ [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>$\sigma(t) = -1 \cdot 10^{-11} \cdot T^5 - 1 \cdot 10^{-10} \cdot T^4 + 2 \cdot 10^{-8} \cdot T^3 + 2 \cdot 10^{-6} \cdot T^2 + 0.0005 \cdot T + 0.1204$</td>
</tr>
<tr>
<td>5</td>
<td>3.55</td>
<td>$\sigma(t) = 1 \cdot 10^{-11} \cdot T^5 + 6 \cdot 10^{-4} \cdot T^4 - 3 \cdot 10^{-8} \cdot T^3 + 3 \cdot 10^{-6} \cdot T^2 - 0.0006 \cdot T + 0.1371$</td>
</tr>
<tr>
<td>10</td>
<td>3.1</td>
<td>$\sigma(t) = -3 \cdot 10^{-11} \cdot T^5 + 1 \cdot 10^{-9} \cdot T^4 + 5 \cdot 10^{-9} \cdot T^3 + 1 \cdot 10^{-6} \cdot T^2 + 0.0006 \cdot T + 0.1599$</td>
</tr>
<tr>
<td>15</td>
<td>2.65</td>
<td>$\sigma(t) = 9 \cdot 10^{-11} \cdot T^5 - 6 \cdot 10^{-10} \cdot T^4 - 1 \cdot 10^{-7} \cdot T^3 + 3 \cdot 10^{-6} \cdot T^2 + 0.0006 \cdot T + 0.1924$</td>
</tr>
<tr>
<td>20</td>
<td>1.2</td>
<td>$\sigma(t) = 6 \cdot 10^{-7} \cdot T^2 + 0.0006 \cdot T + 0.423$</td>
</tr>
</tbody>
</table>

The graphs of Von Mises stress computed for $T = -30 \, ^\circ \text{C}$ for: a) the geometrical model (Fig. 16a); b) and c) on the outer and the inner circumference of geometrical model (fig. 16b and 16c).

The graphs of linear deformations computed for $T = 60 \, ^\circ \text{C}$ for: a) the geometrical model (fig. 17a); b) and c) on the outer and the inner circumference of geometrical model (fig. 17b and 17c).
Fig. 17. The graphs of linear deformations computed for \(T = 60^\circ C \) for: a) the geometrical model; b) and c) on the outer and the inner circumference of geometrical model.

The graphs of Von Mises stress computed for \(T = -30^\circ C \) for: a) the geometrical model (fig. 18a); b) and c) on the minimum circumference of circle and on the maximum circumference of circle (fig. 18b and 18c).

Fig. 18. The graphs of Von Mises stress computed for \(T = -30^\circ C \) for: a) the geometrical model; b) and c) on the minimum circumference of circle and on the maximum circumference of circle.

The graphs of linear deformations computed for \(T = 60^\circ C \) for: a) the geometrical model (fig. 19a); b) and c) on the minimum circumference of circle and on the maximum circumference of circle (fig. 19b and 19c).

The maximum circumference of circle

The minimum circumference of circle

Fig. 19. The graphs of linear deformations computed for \(T = 60^\circ C \) for: a) the geometrical model; b) and c) on the minimum circumference of circle and on the maximum circumference of circle.

3. Discussion

The maximum value of the Von Mises stress (\(\sigma = 703.07 \) MPa) occurs at \(T = -30^\circ C \), while the maximum linear deformation (\(u_{\text{max}} = 0.583 \) mm) occurs at \(T = 60^\circ C \), (as shown in Table 1).
The maximum working pressure at $T = -30^\circ C$ is 4.56 times higher than the hydraulic test pressure and the explosion pressure is 1.583 times higher than the maximum working pressure. In the case of linear deformations associated with these two pressures their ratio is $u_t / u_{max} = 1.604$. It was revealed that the Von Mises stress and the linear deformations increase simultaneously with the increase of the temperature and the exploitation period, (as shown in fig. 9 and 10). For $n_a = 0$ years, the Von Mises stress shows a minimum of $\sigma = 156.03$ MPa (at temperature $T = 20^\circ C$), and for $n_a = 20$ years a minimum of $\sigma = 483.92$ MPa (at temperature $T = 10^\circ C$), (as shown in Table 1).

4. Conclusions

In this study, an elaboration of the design and optimization procedure associated with the pressurized toroidal LPG fuel tanks with variable section used in automotive industry based on the FEA approaches were performed. Computer aided investigations were employed to predict the mechanical behavior of toroidal LPG fuel tanks, corresponding to various design scenarios, in order to improve the structural performance for a feasible solution within a prescribed tolerance. A new possibility to improve the pressurized toroidal LPG fuel tanks performance can be offered by the application of adapted cross-sectional shapes instead of the conventional shapes. The results revealed that the optimal toroidal geometry provides a lower weight and lower aspect ratio than the circular one, and thus leads to better structural performance and an alternative to spaces having limited height and volume. Determination of the optimal geometric toroidal model with the minimum number of appropriate design variables through the combination of equations and the optimality conditions would also be considered as design objectives in the future study.

Financial disclosure: Neither author has a financial or proprietary interest in any material or method mentioned.

Competing interests: The authors declare that they have no significant competing financial, professional or personal interests that might have influenced the performance or presentation of the work described in this manuscript.

References

*** Autodesk AutoCAD 2017 software.

*** SolidWorks 2017 software.