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Abstract: The paper presents a numerical study concerning the evolution of viscous friction 
coefficient and friction moment coefficient at low Reynolds numbers for the case of a rotating disk 
inside a vessel. The study is useful in the field of turbomachinery, magneto-hydrodynamic flows, 
mixing processes, hydraulic drives etc. The flow and velocity patterns at low Reynolds numbers 
provides conclusions concerning the disk radius where maximum shear stress arises and the 
influence of the vessel walls on overall vortex motion. 
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1. Introduction  

The flow induced by rotating disks is a classical problem due to large number of applications 
associated to the phenomenon. Regarding turbomachinery field, flow induced by rotating disks in 
Tesla turbines was studied [1] in order to obtain torque and power output. Also, multiple-disk Tesla 
type fan was studied [2] for assessing the performance of such turbomachinery working with low 
viscosity fluid. Effects of viscosity of fluids on centrifugal pump performance [3] were 
experimentally  driven in order to assess the rapid increase in the disc friction losses. For MHD 
applications, recent research was developed in order to obtain exact solutions for the flow of a 
viscous hydromagnetic fluid due to the rotation of an infinite disk [4] or for assessing the heat 
transfer in a steady MHD laminar flow for the same disk motion [5]. Also various applications were 
proposed as mixing two-layer stratified fluid by a rotating disk [6], disk-driven vortical flow in a 
cubical container [7] etc. Some relevant studies are related to calculation of fluid friction for the 
case of a rotational rough disk in a rough vessel [8], study on the flow and heat transfer over a 
rotating disk with surface roughness [9], numeric solution for Navier-Stokes equations for unsteady 
viscous flow over a rotating stretchable disk with deceleration [10].   

The present paper is proposing a numerical solution for the motion of a viscous fluid due to a 
rotating disk inside a vessel. The results are similar with the experimental ones obtained in the 
same conditions [11].      

2. Mathematical model  
 
According to literature the friction moment acting on a rotating body placed in a viscous 
environment is depending on several variables, M = f (R2, ω, ρ, ν) and the consumed power is: 

P0 = Mω = cf ρR2
5ω3 (W).     (1) 

where: M is the friction momentum of the disk and cf is the friction coefficient depending on 
Reynolds number Reω = R2

2ω /ν , relative width (s/R2) between the vassel base s and disk radius 
R2 and relative roughness ∆/R2 (∆ is absolute roughness). If one consider the disk is rotating in 
infinit fluid volume relative width is neglected. The disk rotation is inducing centripetal fluid motion 
in the axial region and centrifugal motion at the periphery of the disk; near the surface of the disk 
the boudary layer has the thickness δ. From the theory of laminar boudary layer one can obtain the 
friction coefficient formula for Re ≤ 30 (Müller): 
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For smooth hydraulic disks (for wich the value of absolute roughness ∆ is below the value of the 
thikness of the boundary layer δ) and for infinit fluid volume condition at 30≤Reω≤3x105 one can use 
Cochran formula: 

 
ωRe

3,87
f0c =       (3) 

For limits of Reynolds number 3x105 ≤ Reω≤106 Kármán formula is available (turbulent): 

5 ωRe

0,146
f0c = ,      (4) 

and for Reω≥106:  

( )2,58
ωlgRe

0,982
f0c =      (5) 

If the case of rotating disk in closed volume when secondary current occur relative width (s/R2) is 
relevant and the availabe formulas are: 

Re

1

2R

s
2π

fc =  (Re ≤ 104); 
Re

2,67
fc =  (104 ≤ Re≤3x105) ; 5 Re

0,0622
fc =  (Re≥3x105) (6) 

It is demonstrated that rotating moment is smaller when finite volume condition is considered then 
infinite volume case for Re ≥ 104 due to secondary flows in the vessel and in the boundary layer. 

In order to obtain the fluid velocity distribution, Navier-Stokes equations was written in cilindrical 
coordinates. Using a numerical integration method developed in [12] one can obtain algebric 
relations for stream lines Ψ0 and velocity lines w0 : 
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The boundary condition on the disk surface and shaft are the same – equal velocity – and zero 
values on the vessel walls. As for the stream line function Ψ0 the values are zero on the 
boundaries because of the closed domaine.   
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 3. Results  

The numerical solutions for low Reynolds numbers (Re1= 100 and Re2= 148) was obtained for 
rotating velocities of the disk of n1=146 rot/min and n2=190 rot/min using an oil viscosity of           
ν= 0,00037[m2/s]. In figure nr. 1 are presented the stream lines for Re1= 100 and Re2= 148 

 

a.                                                                         b. 

Fig. 1 Stream lines for a. Re1= 100 and b. Re2= 148 

In figure nr.1 one can observe that as increasing the Reynolds number the vortex motion (two 
nucleus for Re1 and one nucleus for Re2) is moving for the margins of the disk. The effect is due to 
increasing the shear stress on the disk surface as an consequence of centrifugal forces in the fluid 
flow. In figure 2 is presented the velocity lines according to Re2= 190 and the friction cf and 
momentum cM coefficients for six different Reynolds numbers. 
 

 
 
                                                                                             b.  

Fig 2 a. Velocity lines; b. Friction and momentum  coefficients 
 
The momentum coefficient was obtained by integration the shear stress on the moving surfaces of 
disk and shaft. The theoretical results were compared with experimental measurements made on a 
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closed installation (Dc =100 mm, H =100 mm, shaft diameter d = 10 mm). One found good 
concordance between theoretical and experimental data.    
 
 

Conclusions  

 A numerical study was performed in order to obtain viscous friction coefficient and friction moment 
coefficient at low Reynolds numbers for the case of a rotating disk inside a vessel. The results are 
in a good conformity with experimental data obtained in similar conditions. By simulating the flow 
for various Reynolds numbers between 50 and 300, it was observed a modification of the number 
and position on vortices due to the increase of centrifugal forces and reverse flow as a wall effect. 
Using velocity values in the integration domain it was derived the evolution of friction and moment 
coefficients by integration the shear stress on the moving surfaces. 
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