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Abstract: In this study, an approach based on Finite Element Modeling (FEM) was applied to analyze the
performances of three different pressurized cylindrical fuel tanks with the same lateral cover, but with various
head covers geometries. A specific mechanical and thermal model based on FEM was developed. A
particular analysis of temperature resistance was carried out, to define specific key performance indicators
and to determine the advantageous form of tank with the minimum stress state and linear deformation.
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1. Introduction

In the past decades, the fuel tanks market trend is based on key strategic business plans that
promote the competitive paths in the emerging automotive field and in promoting innovative ideas
to improve vehicle’s performance [1-6].

The challenge for the engineers and research specialists is to formulate a sustainable strategy
based on a rigorous research and analysis that promotes the development computer aided
engineering process of modern fuel tanks, especially over the medium to long term, within the
constraints due to the economic and financial crisis [7-12].

Cylindrical and conformable shaped storage tanks, made from aluminum alloys or various types of
steel, are used in the automotive industry for safely storing fuel: compressed natural gas (CNG) or
liquefied petroleum gas (LPG) [11-14].

In computer aided engineering design and construction of the fuel tanks: specific structure
variables [13-15], shape design variables [16, 17], design constraints [18, 19], software tools
[20-25], and design decision variables [26-28] are used to validate the optimal computational
geometric models [29-36].

The homologation tests of systems and components for LPG and CNG alternative fuelling of cars
according to ECE Regulation No. 67.01, ECE Regulation No. 110 and standards 1SO 15500 are
[37, 38]:

a) Hydrostatic pressure tests: * pressure vessel tests; « destructive tests up to a static pressure of
300 MPa; -« residual strength tests; * metal as well as composite hydraulic member tests;
* hydraulic hose tests.

b) Hydrodynamic pressure tests: * pulsed pressure tests; ¢ cyclic stress tests; * cyclic stress tests
of hoses.

c) Temperature and humidity tests: « tests of devices at extreme temperatures (-70 to 180 °C) and
relative humidity from 10 % to 95 % up to dimensions 1000 x 1000 x 2500 mm.

2. Desigh methodology

In our study the test of temperature resistance, one of the special safety tests of cylindrical
pressurized fuel tanks carried out at the homologation stage, was performed.

The parameterized modeling of the cylindrical pressurized fuel tank (sectioned to ¥ , ¥4 or /s of the
initial model, as a consequence of the tank constructive symmetry) was done in the AutoCAD
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Autodesk 2017 software [39], which was imported to SolidWorks 2017 software [40] for analysis
with the: Static, Thermal and Design Study modules.

The 3D parameterized models were thermally loaded at the specified stress state to determine the
maximum work temperature Ty and the explosion temperature T,, at the initial and final time of
exploitation of the fuel tank.

The design data used in this analysis are:

= the lateral cover with: diameter D = 250 mm and length L = 700 mm,;

the construction material of the sheet metal: steel AISI 4340;

the maximum static hydraulic pressure: pmax = 30 bar;

the working temperature between the limits: T =-30 °C to T = 60 °C;

the exploitation period of tank: n, = 20 years;

= the corrosion rate of the material: v, = 0.1 mm /year.

The temperature resistance means: the maximum temperature at which the resulting stress Von
Mises is equal to the admissible stress traction of material o, = 65 and the explosion temperature
is the temperature at which the Von Mises stress attain the breaking stress of the material ce, = o.

2.1 The study at temperature resistance of the cylindrical lateral cover

The parameterized model used in calculus is a section of ¥ from the initial lateral cover of tank,
taking into consideration the axial symmetry (figure 1) and the specified surfaces to which the
constraints and restrictions are applied (figure 2) [8].

The parametric model Y4

The initial parametric model

Fig. 1. The parametric model of lateral covers Fig. 2. The ¥ section of lateral head covers where
is made the marking of the exterior surfaces

Applying the optimization procedure, a laminate sheet of AISI 4340 steel with a thickness of

s = 4'%% . mm is chosen for FEM analyses.

According to Fig. 2, to calculate the temperatures: Ty and T,, the following algorithm was applied:

- the maximum pressure Pmax = 3 N/mm? on inner surface Se;

- two opposite and equal traction forces, F = 36800 N applied on surfaces: S; and S,, due to the
action of pressure on the inner surface of head covers;

- the high temperature on surface Sg, over T > 60 °C in order to achieve the admissible value of
stress at traction equal with o, = 710 N/mm? (necessary to calculate the work maximum
temperature Thax); and the high temperature in order to achieve the breaking stress of material
with o, = 1100 N/mm? (necessary to calculate the explosion temperature T,);

- the construction material of the lateral cover: steel AISI 4340.

The following numerical results for lateral cover were obtained:

a) for n, = 0 years: Tna = 302.65 °C with the corresponding stress distribution (as shown in
figure 3a); and T, = 474.2 °C, with the corresponding stress distribution (as shown in figure 3b).

b) for n, = 20 years: Tmax = 182.85 °C, with the corresponding stress distribution (as shown in figure
3c); and T, = 336.87 °C, with the corresponding stress distribution (as shown in figure 3d).
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Fig. 3. The graphs of Von Mises stress distribution at: a) the temperature T,,ox and n, = 0 years; b) the

explosion temperature T, and n, = 0 years; c) the temperature T, and n, = 20 years; d) the explosion
temperature T, and n, = 20 years

2.2 The study at temperature resistance of the cylindrical pressurized tank with torospheric
head covers

The parameterized model of tank (as shown in figure 4) and the sketch of torospheric head cover
(as shown in figure 5) are given bellow:

e
> ' r=0.1-D
- _!_ LA ‘R=D
- ' ~h =3.5s
! D ‘»H=0.2D+s+h
Fig. 4. The parametric model of tank Fig. 5. The sketch of torospheric head cover

with torospheric head covers

After design optimization a laminate sheet of AISI 4340 steel with a thickness of s = 5.5"%% ;s mm
it was chosen for the manufacturing process (as shown in figure 5). Next dimensions were
obtained for the head cover: R = 250 mm, r=25 mm, h =20 mm and H = 75.5 mm.

The following numerical results were obtained for Von Mises stress distribution at n, = O years:
Tmax = 232.22 °C with the corresponding stress distribution (as shown in figures 6a and 6b); and
T, = 363.39 °C, with the corresponding stress distribution (as shown in figures 6c and 6d).

The graphs of Von Mises stress distribution were shown on the sectioned model at /s in figures 6a
and 6¢ and in figures 6b and 6d for the entire model.
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Fig. 6. The graphs of Von Mises)stress distribution for n, = 0 years: a) and b) at the temperature Ty
¢) and d) at the explosion temperature T,

The following numerical results were obtained for Von Mises stress distribution at n, = 20 years:
Tmax = 156.18 °C with the corresponding stress distribution (as shown in figures 7a and 7b); and
T, = 283.3 °C, with the corresponding stress distribution (as shown in figures 7c and 7d).
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Fig. 7. The graphs of Von Mises stress distribution for n, = 20 years: a) and b) at the temperature T ax;
¢) and d) at the explosion temperature T,

2.3 The study at temperature resistance of the cylindrical pressurized tank with ellipsoidal
head covers

The parameterized model of tank (as shown in figure 8) and the sketch of ellipsoidal head cover
(as shown in figure 9) are given bellow:
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Fig. 8. The parametric model of tank Fig. 9. The sketch of ellipsoidal head cover
with ellipsoidal head covers according the standard DIN 28013

After design optimization a laminate sheet of AISI 4340 steel with a thickness of s = 4.5"%% ;s mm
it was chosen for the manufacturing process (as shown in figure 9). Next dimensions were
obtained for the ellipsoidal cover: R = 200 mm, r = 38.5 mm, h = 16 mm and H = 85.5 mm.

The following numerical results were obtained for Von Mises stress distribution at n, = 0 years:
Tmax = 271.55 °C, with the corresponding stress distribution (as shown in figures 10a and 10b); and
T, = 407.15 °C, with the corresponding stress distribution (as shown in figures 10c and 10d).

The graphs of Von Mises stress distribution were shown on the sectioned model at “/s in figures
10a and 10c and in figures 10b and 10d for the entire model.
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Fig. 10. The graphs of Von Mises stress distribution for n, = 0 years: a) and b) at the temperature T,ax;
¢) and d) at the explosion temperature T,

The following numerical results were obtained for Von Mises stress distribution at n, = 20 years:
Tmax = 155.07 °C, with the corresponding stress distribution (as shown in figures 11a and 11b);
T, = 280.85 °C, with the corresponding stress distribution (as shown in figures 11c and 11d).
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Fig. 11. The graphs of Von Mises stress distribution for n, = 20 years: a) and b) at the temperature
Tmax; €) and d) at the explosion temperature T,

2.4 The study at temperature resistance of the cylindrical pressurized tank low pressure
head covers

The parameterized model of tank (as shown in figure 12) and the sketch of the low pressure head
cover (as shown in figure 13) are given bellow:
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Fig. 12. The parametric model of tank Fig. 13. The sketch of the low pressure head cover
with low pressure head covers

After design optimization a laminate sheet of AISI 4340 steel with a thickness of s = 6.5"% 35 mm
it was chosen for the manufacturing process (as shown in Figure 13). Next dimensions were
obtained for the low pressure head cover: h =22 mm, r = 15 mm and H = 61 mm.

The following numerical results were obtained for Von Mises stress distribution at n, = 0 years:
Tmax = 222.25 °C, with the corresponding stress distribution (as shown in figures 14a and 14b); and
T, = 360.94 °C, with the corresponding stress distribution (as shown in figures 14c and 14d).

The graphs of Von Mises stress distribution were shown on the sectioned model at /s in figures
14a and 14c and in figures 14b and 14d for the entire model.
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Fig. 14. The graphs of Von Mises stress distribution for n, = 0 years: a) and b) at the temperature T,ax;
¢) and d) at the explosion temperature T,

The following numerical results were obtained for Von Mises stress distribution at n, = 20 years:
Tmax = 150.2 °C, with the corresponding stress distribution (as shown in figures 15a and 15b);
T,= 275.55 °C, with the corresponding stress distribution (as shown in figures 15¢ and 15d).
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Fig. 15. The graphs of Von Mises stress distribution for n, = 20 years: a) and b) at the temperature Tay;
¢) and d) at the explosion temperature T,

The linear deformation corresponding to the extreme temperatures were also computed. The
numerical values of state of stress and linear resultant deformation of the tanks are given in
Table 1.

Table 1: The Von Mises stress and deformation of tanks at temperatures T, and T,

No. | The type of cylindrical tank nalyears] | Tmax['Cl | Umax[mm] | T.[°C] | u,[mm]
6, = 710 MPa o, = 1100 MPa
1 | Tank with torosferic head covers 200 igéig 8?3(13 ggggg 8;gg
2 | Tank with ellipsoidal head covers 200 igégg 00‘75852 gggég 2(7)32
. 0 225.25 0.713 360.94 | 0.912
3 | Tank with low pressure head covers 0 150.20 1192 575 55 1458

The graphical representations of Tpa(Nank) @and T¢(nwnk) depending on the number’s tank as
specified in Table 1, computed for the initial and the final time of exploitation are shown in figures
16 and 17.

450 . Theexplosion temperature T, 300 283.3 280.85 275.55
[ — =
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200 71 55 200 4 The explosion temperature T,
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s & 150 * —— —e
F 200 _ -
The maximum work temperature T . 100 | o
150 ‘ The maximum work temperature Ty
100 +— ‘ ‘
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0 | ‘
1 2 3 1 2 3
Fig. 16. The graphs of T,(Nnk) and Tmax(Niank) Fig. 17. The graphs of T,(nin) and Tmax(Neank)
at n, =0 years at n, = 20 years

The graphical representations of Tyax(Nank) and T(nan) depending on the number’'s tank as
specified in Table 1, computed for the initial and the final time of exploitation (arranged on the
same graph) are shown in figures 18 and 19.
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Fig. 18. The graphs of Tax(Nank) Fig. 19. The graphs of T,(Nnk)
at n, = 0 and 20 years at ny = 0 and 20 years

The graphical representations of Tax(Na, Nank) @nd T,(Ng, Niank) are shown in figures 20 and 21.
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Fig. 20. The 3D graph of Tax(Na, Niank) Fig. 21. The 3D graph of T,(n,, Niark)

The graphical representations of Umax(N@nk) and u(Ngnk) depending on the number’'s tank as
specified in Table 1, computed for the initial and the final time of exploitation are shown in figures
22 and 23.
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Fig. 22. The graphs of u(n,) for T, Fig. 23. The graphs of u(n,) for T,
and T at ng = 0 year and T at ng = 20 years

The graphical representations of Umax(Nank) @nd u(Niank) depending on the number’s tank as specified
in Table 1, computed for the initial and the final time of exploitation (and arranged on the same
graph for T« and T,) are shown in figures 24 and 25.
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Fig. 24. The graphs of u(ng, Niank) for Tmax Fig. 25. The graphs of u(n,, nynk) for T,

The graphical representations of Umax(Na, Nwank) and u(N,, Nank) are shown in figures 26 and 27.
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Fig. 26. The 3D graph of Umax(Na, Ntank) Fig. 27. The 3D graph of u,(ng, Niank)
3. Discussion

The tank with ellipsoidal head covers (at n, = O years) has the highest work temperature
Tmax = 271.55 °C and the highest explosion temperature T, = 407.15 °C, while the tank with low
pressure head covers has the lowest work temperature T = 225.25 °C and the lowest explosion
temperature T,= 360.94 °C, (as shown in figure 16).

The tank with torospheric head covers (at n, = 20 years) has the highest working temperature
Tmax = 156.18 °C and explosion temperature T, = 283.3 °C; while the tank with low pressure head
covers has the lowest work temperature Tpa = 150.2 °C and explosion temperature T, = 275.55 °C,
(as shown in figure 17).

The tank with low pressure head covers (at n, = 0 years, for T and T,) has the maximum linear
deformation Uy = 0.713 mm and u, = 0.912 mm; while the tank with torospheric head covers has
the lowest deformation Una = 0.541 mm and u, = 0.744 mm, (as shown in figure 22).

The tank with low pressure head covers (at n, = 20 years, for T and T,) has the maximum linear
deformation Umax = 1.192 mm and u, = 1.458 mm; while the tank with ellipsoidal head covers has
the lowest deformation Uy = 0.782 mm and u, = 1.005 mm.

4. Conclusions

In this study, were analyzed the performances of three different pressurized cylindrical fuel tanks
with the same lateral cover, but with various head covers geometries. It was found that the
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temperature resistance, the Von Mises stress and deformation are influenced by the tank
geometry.

The highest temperature resistance (at n, = 0 years) was found for the tank with ellipsoidal head
covers, while the lowest temperature resistance was found for the tank with low pressure head
covers.

The highest temperature resistance (at n, = 20 years) was found for the tank with torospheric head
covers, while the lowest temperature resistance was found for the tank with low pressure head
covers.

The lowest linear deformation was found for the tank with torospheric head covers, while the
maximum deformation was found for the tank with low pressure head covers.
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