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Abstract: This study addresses the design and optimization of the pressurized toroidal LPG fuel tanks with
variable section used in automotive industry based on the finite element analysis (FEA) approaches, to
model both thermal and mechanical processing conditions. To define specific key performance indicators
and to determine the optimal form of toroidal LPG fuel tank with the minimum stress state and linear
deformation was applied a mathematical and mechanical foundation for the design and optimization.
Computer aided investigations are carried out using 3D models done in the AutoCAD Autodesk 2017
software, which were imported to SolidWorks 2017 software for analysis and can offer an important
reference for the design of toroidal LPG fuel tanks.
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1. Introduction

During the past decades, the computer aided engineering design methods to produce pressurized
fuel tanks in the automotive industry [1-3] have been developed in a variety of directions to improve
vehicle’s performance [4-6]. The storage fuel tanks, made from aluminum alloys or various types of
steel, are used in the automotive industry for safely storing fuel: compressed natural gas (CNG) or
liquefied petroleum gas (LPG) [7-12]. The design, construction, installation, testing and monitoring
requirements of the storage fuel tanks (to maintain structural integrity at high pressures) are
bounded and regulated by various codes and standards [13-15].

The design procedure of the fuel tanks involves various assumptions, supershapes design
variables [16, 17], specific structure parameters [14], design constraints [15], computer tools [18-
23], numerical computational methods [24-26], CAD visualization techniques [27-34], test data and
experimental data, that permit to obtain an optimal product with a low structural weight and a high
structural performance.

The pressurized toroidal LPG fuel tanks have been recognized as a volumetrically efficient storage
solution that can reduce final product mass, while improving storage efficiencies [14, 15].

In our study, a finite element analysis of pressurized toroidal LPG fuel tank to meet safety
standards and optimization was conducted considering specific geometry and structure
parameters.

2. Desigh methodology

In our study, optimal design of toroidal cross-sectional profiles (considering shape and thickness
variation) in order to reduce stress non-uniformity is performed.

2.1 Basic geometry of toroidal surfaces

Let’s consider the surface generated by revolving of a closed generating curve Cg along a guiding
curve Cp, being tangent in the movement on a second internal curve Cp,, as shown in fig. la.

The curve Cg (that generates the cross-section) is located in a vertical plane, whereas the
reference curves Cp; and Cp, (that determine the variation in the cross-sectional dimensions) are
coplanar and situated in the horizontal plane.

32


mailto:stefan_ta@yahoo.com

ISSN 1453 - 7303 “HIDRAULICA” (No. 1/2018)
Magazine of Hydraulics, Pneumatics, Tribology, Ecology, Sensorics, Mechatronics

An example of the manufactured product with the apparature monted on the tank that permit an
easy access to the filling or drainage connections of fuel tank is shown in fig. 1c.

The toroidal tank with variable section
The connections for filling/drainage
The space — fitting equipment

A toroid with variable section

The guiding curve Cp;
The guiding curve Cp;
The generating curve Cg b)

Support legs

Fig. 1. a) The ¥ section of a toroidal tank; b) The model of a toroidal tank; ¢) The tank constructive solution
The graphical representations of toroidal symmetrical parts in respect with the symmetrical planes

is shown in orthogonal views in fig. 2a and 2b, while the axonometric representation is shown in
fig. 2c.

a) b) c)

Fig. 2. a) and b) The orthogonal views with the symmetry horizontal plane; c) The axonometric
representation of the tank constructive solution

The generating curves and the directories curves are closed curves that do not intersect on
themselves, such as: ellipses, circles, triangles, rectangles, etc. Some graphical examples of
toroids with variable section are shown in figs. 3 and 4.

Cs — ellipse; Cp - circle Cs — square; Cp, - circle Ce — hexagon; Cp, - circle

a) b) c)

Fig. 3. The axonometric representation of a % toroid sectioned generated by: a) Cg — ellipse and
Cp — circle; b) Cg — square and Cp, — circle; ¢) Cg — hexagon and Cp — circle
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Cs — cerc; Cp - ellipse Cs —square; Cp, - ellipse Cs — hexagon; Cp, - ellipse

Fig. 4. The axonometric representation of a % toroid sectioned generated by: a) Cg — circle and
Cp — ellipse; b) Cs — square and Cp, — ellipse; c) Cg — hexagon and Cp, - ellipse

2.2 The geometrical model selected for numerical analysis

The geometrical model selected for numerical analysis is shown in fig. 5a (C¢ — ellipse and Cp —
circle), with next numerical values for the diameters of circles: Cp; and Cp, (Cp; = 300 mm and
Cpbz1 = 130 mm). The eccentricity of the curves: Cp; and Cp; has the value of e = 25 mm.

The axonometric isometric view of the parameterized geometrical model (non-sectioned and

sectioned to ¥ and % of the initial model, as a consequence of the tank constructive symmetry) is
shown in fig. 5.

a) b) )

Fig. 5. The geometrical model: a) non-sectioned; b) sectioned at ¥; c) sectioned at %2

The modeling was done in the AutoCAD Autodesk 2017 software [35] and the optimization
analysis to ensure quality, performance, and safety was performed with SolidWorks 2017 software
[36] with the: Static, Thermal and Design Study modules.

The specified surfaces to which the constraints and restrictions are applied are shown in fig. 6.

The parametric model at ¥4
;

a) b)

Fig. 6. The geometrical model at ¥4 with the specified surfaces

The design data used in this analysis are:

- the maximum static hydraulic pressure: pmax = 3 N/mm? applied to the surface Ss;

- the working temperature between the limits: T = -30 °C to T = 60 °C applied to the surface Sy;
- the symmetry on surfaces: S; and Sy;

- the fixed surfaces located on the legs support on S5 (shown in Fig. 5b);

- the execution material for tank is AISI 4340 laminated steel;

- the exploitation time of tank is: n, = 20 years;

- the corrosion velocity of material: v, = 0.09 mm/year.
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The optimal design issue here refers to the non-linear constrained optimization and involves
minimizing the structural weight W (associated with the cover thickness s = 0.5...3 mm), subjected
to the non-linear design constraints (the maximum Von Mises stress must by less than or equal to
the admissible traction value of the material, ¢ ;< 6 ., =710 N/mmz).

Applying the numerical optimization procedure for T = -30 °C, the following values were obtained:
thickness s = 0.9 mm; the maximum Von Mises Stress Gy ma= 703.073 N/mm? and the linear
deformation Upax= 0.533 mm.

The graphs of Von Mises stress and linear deformation distribution computed for T = -30 °C are
shown in fig. 7.
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Fig. 7. The graphs of: 1) Von Mises stress distribution: a) non-sectioned model and b) sectioned model;
1) linear deformation distribution: c) non-sectioned model and d) sectioned model

The optimal thickness is corrected considering the influence of the corrosion phenomenon and the
negative tolerance of the metal sheet, using the following formula [10]:

Srea| = Sopt + ASC + AST + ASam = Sopt + Vc' na + abS(A|) + 0.1 'S (1)

where:
- As., the additional thickness used to compensate the loss of thickness due to the corrosion
process;
- Ast, the additional thickness used to compensate the loss due to the negative tolerance of the
execution of laminate metal sheet;
- V¢, the corrosion velocity of the metal sheet, v, = 0.08 mm/year;
- N,, the number of years of exploitation, n, = 20 years;
- A, the negative tolerance of the laminate sheet, A; = - 0.6 mm;
- Asam = 0.1's, the additional thickness used to compensate the thinning of wall into the embossing
process, ASam = 0.4 mm.
By substituting the numerical values, the minimum thickness of the laminate sheet has the
following value:

Srearmin = 0.9 + 0.09- 20 + abs(-0.6) +0.1-4 = 3.7 mm 2
For the execution, we choose a laminate sheet of AISI 4340 steel that has a thickness of
S = 4+0.25_0.6 mm.
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2.3 Three-dimensional stress and strain analysis

In these analyses, the following hypothesis has been applied for the formulation of stresses and
strains: a) the 3-D model is subjected to axisymmetric loading and keeps symmetry before and
after deformation.

For n, = 0 years and temperature T = -30 °C, the numerical value of pressure p = 13.68 N/mm? and
the corresponding graphs of Von Mises stress distribution and linear deformation distribution are
shown in fig. 8.
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Fig. 8. The graphs of: a) Von Mises stress distribution; b) linear deformation distribution; both computed
for Pmax, T = -30 °C and n, = 0 years.

The graphs of Von Mises stress distribution and linear deformation distribution (computed for
explosion pressure, T = -30 °C) were shown on the sectioned model at ¥z in figures 9b and 9d and
in figures 9a and 9c for the entire model. For n, = 0 years and T = -30 °C, the computed tank
explosion pressure is p = 21.65 N/mm?and the maximum linear deformation is Umax = 0.855 mm.
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Fig. 9. The graphs of: I) Von Mises stress distribution: a) non-sectioned model and b) sectioned model;
II) linear deformation distribution: ¢) non-sectioned model and d) sectioned model; both computed for the
explosion pressure and T = -30 °c.
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It can be revealed that the explosion pressure is greater by 7.21 times than the maximum test
pressure of the fuel tank.
The numerical values of state of stress and linear deformation distribution are given in Table 1.
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Table 1: The Von Mises stress and linear deformation of geometrical model

T[C]

No. of years|simm]| -30°C| -20°C | -10°Cc [0°C [10°C |20°C [30°C |[40°C |50°C [60°C
0 [s[MPa] |4 212.57/ 191.01 | 174.58 | 163.27 | 159.04 | 156.03 | 160.08 | 169.27 | 183.57 | 202.99

u[mm] 0.1073 0.1112 | 0.1156 | 0.1204 | 0.1255 | 0.1314 | 0.1376 | 0.1442 | 0.1512 | 0.1587
5 |s[MPa]| 3.55 [ 231.19 211.49 | 194.74 | 183.86 | 174.43 | 168.09 | 169.58 | 174.13 | 193.49 | 213.83

u[mm] 0.123 [ 0.127 [0.132 [0.137 |0.143 [0.150 [0.156 [0.163 |0.170 |0.178
10 o[ MPa]| 3.1 | 235.66 226.12 | 216.87 | 207.92 | 199.31 | 191.09 | 192.23 | 195.78 | 212.18 | 233.91

u[mm] 0.145 [ 0.149 [0.154 |0.160 |0.166 |[0.172 [0.179 |0.186 | 0.193 [ 0.200
15 o[ MPa] | 2.65 | 282.65 264.64 | 252.84 | 241.91 | 231.33 | 221.67 | 221.92 | 234.47 | 256.54 | 279.47

u[mm] 0.177 [ 0.182 [0.187 [0.192 |0.199 [0.205 [0.211 [0.218 |0.225 [ 0.232
20 |s[ MPa] | 1.2 | 550.48 532.83 | 515.58 | 498.78 | 483.92 | 478.44 | 494.58 | 511.66 | 529.59 | 548.27

u[mm] 0.406 | 0412 [0.417 [0.423 | 0.429 |0.435 [0.441 [0.447 |[0.454 | 0.46
Opti- 5[ MPa] 703.07| 685.97 | 669.18 | 652.70 | 636.57 | 620.82 | 616.51 | 636.32 | 656.87 | 677.48
mal 0.9

u[mm] 0.533 [ 0.538 [ 0.544 |0.549 | 0.555 | 0.560 [ 0.566 |[0.571 | 0.577 | 0.583

The graphical representations of Von Mises stress

specified in Table 1, are shown in figures 10 and 11.
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Fig. 10. The graph of Von Mises stress o(s, T)
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Fig. 11. The graph of linear deformation u(s, T)

o(s, T) and the linear deformation, u(s, T) as

The graphs of Von Mises stress (for n, = 0 years and n, = 20 years) is shown in fig. 12 and 13 with
the corresponding the laws of stress variation computed by polynomial interpolation.
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The laws of stress variation computed by polynomial interpolation are given in Table 2.

Fig. 12. The graph of Von Mises stress
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Table 2: The laws of stress variation computed by polynomial interpolation

Ny [years]| s[mm] o(t) [MPa]
0 4 o(t) =0.0253-T? -0.867- T +163.88
S 3.55 o(t)=2-107-T°+6-10°-T* -0.0003- T* +0.0153- T?> —0.9889 - T +183.27
10 3.1 o(t)=-2-10°-T°+6-10°-T* +0.0002- T* +0.0013- T> —0.9278- T + 207.79
15 2.65 o(t)=-2-107-T*+2-10°-T* +0.0003- T* —0.0038- T2 —1.1523- T + 242.06
20 12 o(t)=—1-10°-T°-3-10°-T* +0.0019- T® +0.0212- T> —1.8863- T + 497.84

The graphs of linear deformations (for n, = 0 years and n, = 20 years) is shown in fig. 14 and 15

with the corresponding the laws of linear deformations

interpolation.
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Fig. 14. The graph of linear deformations

at n, =0 years

Fig. 15. The graph of linear deformations

at n, = 20 years
The laws of linear deformations variation computed by polynomial interpolation are given in Table 3.

Table 3: The laws of linear deformations variation computed by polynomial interpolation

na[years] | s [mm] o(t) [MPa]

0 4 o(t)=-1-10"-T°-1.10"°.T*+2.10®%-T*+2.10°-T?+0.0005- T +0.1204
5 3.55 o(t)=1-10".T°+6-10*-T*-3.10°- T3 +3.10°-T? -0.0006- T+0.1371
10 3.1 o(t)=-3-10"-T°+1.10°-T*+5-10° - T*+1-10°-T? +0.0006- T + 0.1599
15 2.65 o(t)=9-10".T°-6-10°.T* -1.107-T*+3.10°-T? +0.0006- T +0.1924
20 1.2 o(t)=6-10"-T? +0.0006- T +0.423

The graphs of Von Mises stress computed for T = -30 °C for: a) the geometrical model (Fig. 16a);

b) and c) on the outer and the inner circumference of geometrical model (fig. 16b and 16c).
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Fig. 16. The graphs of Von Mises stress computed for T = -30 °C for: a) the geometrical model; b) and c¢) on
the outer and on the inner circumference of geometrical model

The graphs of linear deformations computed for T = 60 °C for: a) the geometrical model (fig. 17a);
b) and ¢) on the outer and the inner circumference of geometrical model (fig. 17b and 17c).
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Fig. 17. The graphs of linear deformations computed for T = 60 °C for: a) the geometrical model; b) and c) on
the outer and the inner circumference of geometrical model

The graphs of Von Mises stress computed for T = -30 °C for: a) the geometrical model (fig. 18a);
b) and c) on the minimum circumference of circle and on the maximum circumference of circle (fig.
18b and 18c).
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Fig. 18. The graphs of Von Mises stress computed tor | = -30 °C for: a) the geometrical model; b) and ¢) on
the minimum circumference of circle and on the maximum circumference of circle
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The graphs of linear deformations computed for T = 60 °C for: a) the geometrical model (fig. 19a);
b) and c) on the minimum circumference of circle and on the maximum circumference of circle (fig.
19b and 19c).
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Fig. 19. The graphs of linear deformations computed for T = 60 °C for: a) the geometrical model; b) and c) on
the minimum circumference of circle and on the maximum circumference of circle

3. Discussion

The maximum value of the Von Mises stress (¢ = 703.07 MPa) occurs at T = - 30 °C, while the
maximum linear deformation (Umax = 0.583 mm) occurs at T = 60 °C, (as shown in Table 1).
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The maximum working pressure at T = -30 °C is 4.56 times higher than the hydraulic test pressure
and the explosion pressure is 1.583 times higher than the maximum working pressure. In the case
of linear deformations associated with these two pressures their ratio is U, / Unax = 1.604.

It was revealed that the Von Mises stress and the linear deformations increase simultaneously with
the increase of the temperature and the exploitation period, (as shown in fig. 9 and 10).

For n, = 0 years, the Von Mises stress shows a minimum of ¢ = 156.03 MPa (at temperature
T = 20 °C), and for n, = 20 years a minimum of o = 483.92 MPa (at temperature T = 10 °C), (as
shown in Table 1).

4. Conclusions

In this study, an elaboration of the design and optimization procedure associated with the
pressurized toroidal LPG fuel tanks with variable section used in automotive industry based on the
FEA approaches were performed. Computer aided investigations were employed to predict the
mechanical behavior of toroidal LPG fuel tanks, corresponding to various design scenarios, in
order to improve the structural performance for a feasible solution within a prescribed tolerance.

A new possibility to improve the pressurized toroidal LPG fuel tanks performance can be offered by
the application of adapted cross-sectional shapes instead of the conventional shapes.

The results revealed that the optimal toroidal geometry provides a lower weight and lower aspect
ratio than the circular one, and thus leads to better structural performance and an alternative to
spaces having limited height and volume. Determination of the optimal geometric toroidal model
with the minimum number of appropriate design variables through the combination of equations
and the optimality conditions would also be considered as design objectives in the future study.
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