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Abstract: The aim of this research is to identify similarities and differences between the stress and 
deformation behaviors of a three-dimensional (3-D) hexagonal toroid with a regular hexagonal cross-section 
used in the manufacturing of liquefied petroleum gas (LPG) storage tanks from the automotive industry under 
compression and traction loads using the finite element simulations. Compression and traction loads applied 
to the structural design of a storage tank are according to its intended use, size, structure type, materials, 
design lifetime, in order to assure product safety and to maintain its essential functions. Numerical 
simulations of the influence of compression, traction loads, and temperature for a given situation considering 
the 3-D geometry model are used to explain observed phenomena, explore the limitations of various 
approaches, improved techniques, and technology, and assure the safety of LPG storage tanks. Higher 
temperature changes and the thermal gradient between the surface layer and the inner layer of material can 
determine the modification of the mechanical properties of the material and can lead to the formation of fine 
cracks. The storage tank design model is formulated, according geometrical, mechanical and thermal 
aspects, to minimize the storage tank mass in terms of thermal performance and safety aspects. The 
quantitative computational approaches based on the design specifications and standards were used to 
evaluate the product performance as well as the accuracy of results. The approach proposed by the authors 
enables a significant reduction in the computational time and makes it possible to perform complex numerical 
simulations for various 3-D models. The research results besides numerical comparisons, provide a clear 
basis for interpreting and understanding the relevance of this research method in design of LPG storage 
tanks. 

Keywords: 3-D hexagonal toroidal LPG fuel tank, compression and traction loads, automotive industry, 
industrial engineering design, optimization methods, finite element analysis  

1. Introduction 

Computer-aided manufacturing (CAM) and computer-aided design (CAD) play a central role in 
developing the fuel storage tanks market from the automotive industry, to provide high-quality 
products and to fully satisfy customer needs and expectations [1-3]. 
In computer-aided design (CAD) of production models [4-7], innovative approaches are needed to 
satisfy the global market growth, while simultaneously reducing production costs, in correlation with 
quality requirements and security legislation [8-11].  
Three-dimensional (3-D) CAD models not only provide geometry information for different 
geometrical variants of liquefied petroleum gas (LPG) storage tanks [12-15], but also serve as the 
basis for module configuration [16-19], as well as for various simulation [20-22], verification 
processes [23-25] and quality control [24-26]. 
Finite element analysis (FEA) is a computational tool [27-29] in engineering to design [30-32] and 
failure analysis to calculate the strength and behavioral characteristics of a material under various 
conditions, and to investigate large-scale and small-scale behaviors of materials. 
This modern tool provides many useful advantages for numerical stress analysis, with an 
advantage of being applicable to solids of irregular geometry that contain heterogeneous material 
properties, not for replacements for experimental techniques. Also, the 3-D computational model 
[33, 34] can be tested under different conditions, under various simple or combined static or 
dynamic loads, and the simulation results can allow a fast, accurate comparison of numerous 
results for integrated product development. 
In general, computational studies in fluid mechanics [35-38] and heat transfer processes of LPG 
storage tanks have a major benefit in geometrical optimization [39-42], fluid-structure interaction 
modelling, and improved product quality.  
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According to the scientific literature of (LPG) storage tanks, rare studies were devoted to the 
compression and traction loads of 3-D hexagonal toroid with a regular hexagonal cross-section, or 
combined deformation behaviors using the finite element simulations.  
The objectives of this study are as follows: (1) to develop a simplified 3-D model for the 
compression and traction loads, (2) to study computationally the role of the main geometric 
parameters and temperature to give preliminary recommendation on optimization of engineering 
solutions for manufacturing, (3) to present a numerical solution for realistic case study. 

2. Design methodology  

2.1. Basic geometry of the parametric 3-D model 

Let’s consider the parametric 3-D model generated by revolving of a closed generating curve CG (a 
hexagon with rounded corners) along a closed guiding curve CD (a hexagon with rounded corners) 
as shown in fig. 1 [14]. 
The following parameters were applied as input parameters to the 3-D parametric model (figs. 1 
and 2): a) a closed generating curve CG (a hexagon with a side value L = 175 mm, with rounded 
corners, radius R = 50 mm), and b) the guiding curve CD (a hexagon with a side value L = 430 
mm, with rounded corners, radius R = 180 mm), and the thickness = 10 mm. 
 
 
 
 
 
 
 
 

Fig. 1. The isometric representation of non-deformed 3-D model: a) view; b), c) and d) different sections 
 
Based on the physical model, the modeling was done in the AutoCAD Autodesk 2020 software and 
the numerical analysis was performed with SolidWorks 2020 software with the Static, Thermal and 
Design Study modules. The design data used were: 
 the tank material is AISI 4340 steel; 
 the maximum hydraulic test pressure: pmax = 30 bar; 
 the working temperature between the limits: T = -30 0C  up to T = 60 0C; 
 supporting surfaces located on the inferior side; 
 the duration of the tank exploitation: na = 15 years; 
 the corrosion rate of the material: vc = 0.07 mm/year. 
The numerical analyses of the influence of uniaxial compression and traction loads were studied in 

references [20, 22], considering for L = 1.33% from the average diameter of the 3-D model, 
measured in the direction of deformation (figs. 2 and 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The isometric representation of deformed 3-D model, after the uniaxial compression:  
a) view; b) cross section 

a) b) c) d) 

The compression axis 

The compression force 
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Fig. 3. The isometric representation of deformed 3-D model, after the uniaxial traction:  
a) view; b) cross section 

 
The uniaxial displacement under compression or traction loads is noted with Lc. 

As can be seen in the qualitative deformation of the 3-D model, for the case of compression loads 
the height of the cross section increases; while for the traction loads, the height of the cross 
section decreases. Both types of deformations determine directly, additional Von Mises resultant 
efforts and additonal resulting linear deformations of the 3-D model, greater than the maximum 
admissible limits of material. 
It can be seen that the compression and traction loads are applied normally on the parallel sides of 
the model by means of the tangent planes (fig. 4 and 5), in addition to the affecting factors 
(temperature and corrosion process). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The isometric representation of 3-D model,          Fig. 5. The isometric representation of 3-D model, 
           deformed, after the uniaxial compression                         deformed, after the uniaxial traction 
  

Numerical calculations were performed for: mesh standard type, solid mesh, curvature-based 
mesh with quality high, Jacobian in 16 points, element size 11 mm, number of nodes 30628, 
number of elements 15368. The Von Mises resultant efforts were calculated in both cases of 
deformations (compression and traction loads) in references [20, 22] and shown in table 1. 
 
Table 1: The Von Mises resultant effort for: T = -30 0C, 0 0C, 30 0C, 60 0C} and na= 0, 5, 10 and 15 years} 

na 

years 

Lc, t 

mm 

T C T C 

-30 0 30 60 -30 0 30 60 

c MPa / the compression loads t MPa / the traction loads  

0 

0 665.40 565.66 479.29 527.43 665.40 565.66 479.29 527.43 

1 639.82 542.94 515.96 557.23 545.22 470.35 485.68 541.97 

2 627.93 527.30 500.92 546.85 505.58 443.67 466.81 527.46 

Ft 

Ft 

Ft 

Ft 
The traction axis  

The traction force 

 

The traction force 

 

b) a) 

The compression axis 
  

Fc 

Fc 

The compression force 
 

The traction axis 

The traction force 

 

Ft 

Ft 



ISSN 1453 – 7303                                                                   “HIDRAULICA” (No. 2/2021) 
Magazine of Hydraulics, Pneumatics, Tribology, Ecology, Sensorics, Mechatronics 

 

  
18 

 
  

 

2.2. Numerical analysis of the parametric 3-D model 

The graphs of curves corresponding to the Von Mises resultant efforts c,t (Lc, T) are graphically 

shown in fig. 6, for na = {0, 5, 10, and 15 years} and T = -30 0C, 0 0C, 30 0C, 60 0C}. 
 
 

3 531.38 467.79 507.29 549.93 521.01 448.29 487.10 540.16 

4 509.47 464.14 508.40 556.37 531.82 457.71 473.33 527.49 

5 589.15 499.13 448.13 452.74 529.59 455.52 488.13 546.48 

6 674.86 570.83 512.66 561.59 524.46 492.94 474.49 531.09 

7 651.59 550.74 504.76 547.34 657.82 559.64 485.78 538.97 

8 525.77 472.30 516.00 563.23 619.07 524.38 468.05 468.05 

9 523.78 529.17 521.79 570.21 523.90 446.61 466.19 521.03 

10 568.13 533.82 498.05 543.62 522.72 444.74 470.08 527.07 

5 

0 610.22 514.24 511.09 560.58 610.22 514.24 511.09 560.58 

1 532.28 510.09 552.49 598.10 593.51 502.09 506.01 563.14 

2 564.98 521.91 562.62 606.45 534.81 472.72 510.20 556.49 

3 631.33 538.41 557.01 600.40 584.30 502.98 514.43 571.78 

4 678.74 578.54 544.43 591.21 546.24 474.59 525.31 588.70 

5 665.32 564.82 559.06 604.03 565.15 486.81 500.36 558.24 

6 674.56 570.71 512.09 542.58 602.07 524.28 521.33 578.30 

7 679.16 578.01 478.09 488.02 576.45 494.93 478.15 522.33 

8 674.37 570.86 494.20 528.26 704.33 604.23 505.07 559.88 

9 646.48 550.40 559.13 600.81 691.79 591.13 502.17 556.59 

10 649.97 555.16 560.20 596.27 589.18 514.04 507.66 568.22 

10 

0 656.26 615.97 591.97 641.72 656.26 615.97 591.97 641.72 

1 566.98 568.67 606.88 647.44 718.61 623.72 586.50 632.99 

2 577.49 580.21 623.99 670.84 585.76 509.56 535.62 587.22 

3 680.81 585.12 611.01 658.16 591.81 516.25 567.98 623.54 

4 690.24 589.25 601.49 655.87 722.39 623.49 525.83 545.66 

5 703.44 600.73 635.70 675.09 602.64 531.32 576.29 642.99 

6 698.80 601.83 608.11 652.30 737.04 738.28 740.10 742.49 

7 677.61 593.07 639.09 690.45 587.54 510.56 528.33 559.51 

8 657.19 565.88 533.39 570.39 683.04 585.06 555.56 609.76 

9 589.70 547.00 578.70 613.37 584.59 509.34 584.59 585.40 

10 581.48 563.95 606.61 652.00 581.63 505.67 511.08 561.02 

15 

0 754.50 655.70 636.94 688.12 754.50 655.70 636.94 688.12 

1 760.74 661.69 677.69 720.92 680.88 589.79 591.14 638.86 

2 733.97 630.11 636.39 671.18 760.61 669.24 628.56 679.21 

3 608.07 618.41 658.21 700.28 657.33 583.00 643.56 708.33 

4 618.59 636.51 681.17 728.32 640.55 566.19 600.51 644.61 

5 644.32 579.84 618.48 662.06 660.04 586.78 622.83 658.88 

6 633.14 632.84 599.81 627.73 602.60 572.32 634.55 700.08 

7 640.52 627.79 669.36 713.72 636.33 567.02 565.91 573.71 

8 667.74 655.60 703.00 754.60 695.16 592.73 556.54 591.79 

9 624.54 623.04 667.02 713.53 789.42 683.81 579.95 597.50 

10 599.76 618.13 661.29 707.00 735.27 637.78 542.83 590.54 
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Fig. 6 The graphs of the Von Mises resultant efforts with highlighted details:                                                        

(T = 60 0C; na= 0, 5, 10 and 15 years; T = -30 0C, 0 0C, 30 0C, 60 0C}) 

The 3-D graphs corresponding to the Von Mises resultant efforts c,t (Lc, T) taking into account the 
results from table 1 are graphically shown in figs. 7-10, respectively. 

 

 

 

 

 

 

 
 
 
 
 
 

Fig. 7. The graphs of  = f(Lc, T) for na = 0 years  Fig. 8. The graphs of  = f(Lc, T) for na = 5 years 
left (traction domain); right (compression domain) left (traction area); right (compression area) 
 

 

 

 

 

 

 

 

 

 

Fig. 9. The graphs of  = f(Lc, T) for na = 10 years           Fig. 10. The graphs of  = f(Lc, T) for na = 15 years 
left (traction domain); right (compression domain) left (traction area); right (compression area) 
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The graphs of curves  = f(Lc, T) with these highlighted details are shown in figs. 11-14. 

 
 

 

 

 

 

 

 

 

 

 

Fig. 11. The graphs of the Von Mises resultant efforts  = f(Lc, T) with highlighted details:                                                   

(T = -30 0C; na= 0, 5, 10 and 15 years; blue curve – the compression effort; red curve – the traction effort;  

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. The graphs of the Von Mises resultant efforts  = f(Lc, T) with highlighted details:                                                   

(T = 0 0C; na= 0, 5, 10 and 15 years; blue curve – the compression effort; red curve – the traction effort;  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. The graphs of the Von Mises resultant efforts  = f(Lc, T) with highlighted details:                                                   

(T = 10 0C; na= 0, 5, 10 and 15 years; blue curve – the compression effort; red curve – the traction effort;  



ISSN 1453 – 7303                                                                   “HIDRAULICA” (No. 2/2021) 
Magazine of Hydraulics, Pneumatics, Tribology, Ecology, Sensorics, Mechatronics 

 

  
21 

 
  

 

 

 

 

 

 

 

 

 

 

Fig. 14. The graphs of the Von Mises resultant efforts  = f(Lc, T) with highlighted details:                                                   

(T = 60 0C; na= 0, 5, 10 and 15 years; blue curve – the compression effort; red curve – the traction effort.  

It was calculated the percentage variation of the Von Mises effort  (Lc, T) given by compression 
versus the resulting stress state given by traction, using the following formula: 

 %  100
)(

t

tc 



      (1) 

The percentage variation of Von Mises resultant effort  was computed in table 2 and the 
corresponding graphs (in 2-D) are shown in fig. 15. 
 

Table 2: The percentage variation () of the Von Mises effort for:  

T = -30 0C, 0 0C, 30 0C, 60 0C} and na= 0, 5, 10 and 15 years} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lc, t 

mm 

T C T C 

-30 0 30 60 -30 0 30 60 

 MPa   MPa 

 na  = 0 years na  = 5 years 

1 17.35 15.43 6.23 2.82 -10.32 1.59 9.19 6.21 

2 24.20 18.85 7.31 3.68 5.64 10.41 10.27 8.98 

3 1.99 4.35 4.14 1.81 8.05 7.05 8.28 5.01 

4 -4.20 1.40 7.41 5.48 24.26 21.90 3.64 0.43 

5 11.25 9.57 -8.19 -17.15 17.72 16.03 11.73 8.20 

6 28.68 15.80 8.05 5.74 12.04 8.86 -1.77 -6.18 

7 -0.95 -1.59 3.91 1.55 17.82 16.79 -0.01 -6.57 

8 -15.07 -9.93 10.24 20.33 -4.25 -5.52 -2.15 -5.65 

9 -0.02 18.49 11.93 9.44 -6.55 -6.89 11.34 7.94 

10 8.69 20.03 5.95 3.14 10.32 8.00 10.35 4.94 

 na  = 10 years na  = 15 years 

1 -21.10 -8.83 3.47 2.28 11.73 12.19 14.64 12.85 

2 -1.41 13.86 16.50 14.24 -3.50 -5.85 1.24 -1.18 

3 15.04 13.34 7.58 5.55 -7.49 6.07 2.28 -1.14 

4 -4.45 -5.49 14.39 20.20 -3.43 12.42 13.43 12.99 

5 16.73 13.06 10.31 4.99 -2.38 -1.18 -0.70 0.48 

6 -5.19 -18.48 -17.83 -12.15 5.07 10.57 -5.48 -10.33 

7 15.33 16.16 20.96 23.40 0.66 10.72 18.28 24.41 

8 -3.79 -3.28 -3.99 -6.46 -3.94 10.61 26.32 27.51 

9 0.87 7.40 -1.01 4.78 -20.89 -8.89 15.01 19.42 

10 -0.03 11.53 18.69 16.22 -18.43 -3.08 21.82 19.72 
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Fig. 15. The graphs of  (Lc, T) for: T = -30 0C, 0 0C, 30 0C, 60 0C} and na= 0, 5, 10 and 15 years} 

The values of the resultant linear deformation u determined by compression and traction for na= {0, 
5, 10 and 15 years} are shown in table 3. 
 

Table 3: The resultant linear deformations u for: T = -30 0C, 0 0C, 30 0C, 60 0C} and na= 0, 5, 10, 15 years} 

na 

years 

Lc, t 

mm 

T C T C 

-30 0 -30 0 -30 0 -30 0 

uc mm / the compression loads ut mm / the traction loads 

0 

0 0.869 0.837 0.805 0.777 0.869 0.837 0.805 0.777 

1 0.695 0.704 0.715 0.728 0.652 0.660 0.671 0.685 

2 0.675 0.683 0.693 0.704 0.596 0.603 0.612 0.622 

3 0.673 0.681 0.690 0.700 0.619 0.628 0.638 0.651 

4 0.656 0.664 0.673 0.684 0.622 0.631 0.642 0.656 

5 0.635 0.626 0.619 0.614 0.624 0.628 0.634 0.641 

6 0.623 0.632 0.645 0.659 0.618 0.626 0.637 0.650 

7 0.669 0.676 0.685 0.694 0.618 0.624 0.634 0.646 

8 0.654 0.661 0.670 0.680 0.598 0.604 0.611 0.611 

9 0.636 0.644 0.655 0.666 0.602 0.609 0.617 0.629 

10 0.671 0.678 0.686 0.696 0.614 0.621 0.631 0.642 

5 

0 0.938 0.904 0.871 0.841 0.938 0.904 0.871 0.841 

1 0.761 0.769 0.780 0.793 0.709 0.715 0.724 0.733 

2 0.728 0.736 0.745 0.757 0.675 0.683 0.693 0.705 

3 0.727 0.735 0.745 0.757 0.672 0.678 0.686 0.695 

4 0.708 0.712 0.720 0.730 0.700 0.711 0.723 0.736 

5 0.697 0.702 0.709 0.718 0.685 0.692 0.700 0.711 

6 0.720 0.719 0.719 0.720 0.675 0.682 0.691 0.703 

7 0.727 0.720 0.713 0.706 0.644 0.636 0.632 0.639 

8 0.718 0.707 0.699 0.696 0.671 0.679 0.689 0.700 

9 0.687 0.695 0.704 0.714 0.698 0.701 0.707 0.713 

10 0.693 0.699 0.707 0.719 0.699 0.703 0.710 0.717 

10 

0 1.011 0.974 0.944 0.916 1.011 0.974 0.944 0.916 

1 0.836 0.845 0.855 0.866 0.840 0.842 0.845 0.851 

2 0.805 0.815 0.825 0.837 0.711 0.715 0.721 0.729 

3 0.807 0.816 0.826 0.839 0.737 0.748 0.761 0.776 

4 0.805 0.811 0.819 0.828 0.731 0.729 0.735 0.743 

5 0.791 0.796 0.807 0.817 0.754 0.761 0.770 0.780 

6 0.784 0.790 0.797 0.807 0.748 0.744 0.741 0.739 

7 0.788 0.796 0.80 0.814 0.708 0.710 0.714 0.722 

8 0.795 0.793 0.795 0.802 0.755 0.752 0.759 0.769 

9 0.797 0.789 0.783 0.779 0.799 0.788 0.799 0.769 

10 0.804 0.811 0.820 0.831 0.761 0.763 0.766 0.771 
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The graphs of curves (in 2-D) corresponding to the resultant linear deformation u = (Lc, T) for na = 
{0, 5, 10 and 15 years}; are graphically shown in fig. 16, while the corresponding graphs (in 3-D) are 
shown figs. 17-21. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. The graphs of u = (Lc,t, T) for: T = -30 0C, 0 0C, 30 0C, 60 0C} and na= 0, 5, 10 and 15 years} 

 

 
 
 
 
 

 

 

 

 

 

Fig. 17. The graphs of u = (Lc, T) for na = 0 years         Fig. 18. The graphs of u = (Lc, T) for na = 5 years 
left (traction domain); right (compression domain)         left (traction area); right (compression area) 
 

 

 

 

 

 

15 

0 1.106 1.076 1.047 1.020 1.106 1.076 1.047 1.020 

1 0.927 0.933 0.941 0.952 0.872 0.869 0.867 0.800 

2 0.887 0.891 0.887 0.884 0.788 0.791 0.797 0.805 

3 0.905 0.914 0.924 0.935 0.777 0.787 0.799 0.812 

4 0.873 0.882 0.893 0.905 0.834 0.837 0.842 0.849 

5 0.843 0.835 0.829 0.831 0.829 0.835 0.843 0.851 

6 0.882 0.873 0.872 0.877 0.808 0.813 0.820 0.830 

7 0.932 0.938 0.948 0.960 0.792 0.783 0.774 0.768 

8 0.871 0.879 0.888 0.898 0.805 0.804 0.806 0.812 

9 0.833 0.839 0.847 0.855 0.812 0.805 0.802 0.800 

10 0.899 0.904 0.910 0.917 0.842 0.836 0.830 0.824 
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Fig. 19. The graphs of u = (Lc, T) for na = 10 years        Fig. 20. The graphs of u = (Lc, T) for na = 15 years 
left (traction domain); right (compression domain)         left (traction area); right (compression area) 
 

The graphs of curves u = (Lc, T) with these highlighted details are shown in figs. 21-24. 
 
 

 

 

 

 

 

 

 

 

 

 

Fig. 21. The graphs of the resulting linear deformations u = f(Lc, T) with highlighted details:                                                   

(T = -30 0C; na= 0, 5, 10 and 15 years; blue curve – the compression effort; red curve – the traction effort;  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22. The graphs of the resulting linear deformations u = f(Lc, T) with highlighted details:                                                   

(T = 0 0C; na= 0, 5, 10 and 15 years; blue curve – the compression effort; red curve – the traction effort;  
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Fig. 23. The graphs of the resulting linear deformations u = f(Lc, T) with highlighted details:                                                   

(T = 30 0C; na= 0, 5, 10 and 15 years; blue curve – the compression effort; red curve – the traction effort;  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 24. The graphs of the resulting linear deformations u = f(Lc, T) with highlighted details:                                                   

(T = 60 0C; na= 0, 5, 10 and 15 years; blue curve – the compression effort; red curve – the traction effort;  

It was calculated the percentage variation of the resultant linear deformation u (Lc, T) given by 
compression versus the resulting stress state given by traction, using the following formula: 

 %  100
u

)uu(
u

t

tc 


      (1) 

The percentage variation of Von Mises resultant effort u was computed in table 4 and the 

corresponding graphs (in 2-D) are shown in fig. 25. 
 

Table 4: The percentage variation of resultant liniar deformation u for:  

T = -30 0C, 0 0C, 30 0C, 60 0C} and na= 0, 5, 10 and 15 years} 

 

Lc, t 

mm 

T C T C 

-30 0 -30 0 -30 0 -30 0 

u mm  u mm 

 na  = 0 years na  = 5 years 

1 6.62 6.65 6.51 6.35 7.41 7.52 7.81 8.16 

2 13.31 13.36 13.29 13.17 7.92 7.75 7.52 7.38 
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Fig. 25. The graphs of u (Lc, T) for: T = -30 0C, 0 0C, 30 0C, 60 0C} and na= 0, 5, 10 and 15 years} 

3. Conclusions 

Following the numerical analyses and the resulting graphs it has been found that: 
- the state of deformations are amplified with the increase of compression and traction loads; 

- the state of efforts are amplified with the increase of compression and traction loads, and by the 

decreasing of the working temperature; 

- for the compression loads, na= 15 years, T = -30 0C, max = 760.64 MPa > a = 710 MPa, and Lc = 
2 mm; 

- the percentage variation of Von Mises resultant effort () for the compression loads is greater 

with  = 28.68% than the traction loads; 
- the values of the resultant linear deformation u for compression loads are greater than traction 
loads. Also, the resultant linear deformation u is amplified with the increase of the working period; 
- the resultant linear deformation (u) for the compression loads is greater than the traction loads and 
is amplified with the increase of the working period; 

- the percentage variation of resultant linear deformation (u) is greater with u = 25  for the 
compression loads is greater than the traction loads; 
- it can be appreciated that the most disadvantageous state of stresses appears in case the 
compression loads. 
 

3 8.72 8.42 8.06 7.66 8.19 8.40 8.60 8.82 

4 5.48 5.18 4.87 4.26 1.14 0.18 -0.35 -0.78 

5 1.73 -0.31 -2.37 -4.34 1.78 1.47 1.34 1.02 

6 0.76 0.93 1.23 1.37 6.62 5.36 4.01 2.30 

7 8.26 8.26 7.96 7.52 13.01 13.22 12.77 10.53 

8 9.30 9.47 9.65 11.34 6.90 4.16 1.46 -0.52 

9 5.53 5.81 6.04 5.90 -1.56 -0.93 -0.42 0.13 

10 9.40 9.17 8.83 8.38 -0.94 -0.58 -0.30 0.29 

 na  = 10 years na  = 15 years 

1 -0.44 0.35 1.16 1.78 6.22 7.31 8.53 18.99 

2 13.17 13.96 14.43 14.78 12.63 12.71 11.24 9.79 

3 9.51 9.17 8.58 8.11 16.53 16.12 15.66 15.09 

4 10.08 11.35 11.44 11.50 4.58 5.40 6.03 6.54 

5 4.79 4.57 4.78 4.69 1.66 0.00 -1.64 -2.37 

6 4.80 6.14 7.55 9.28 9.15 7.36 6.32 5.70 

7 11.39 12.10 12.66 12.70 17.71 19.82 22.57 24.99 

8 5.25 5.51 4.65 4.39 8.18 9.29 10.14 10.65 

9 -0.24 0.19 -2.05 1.26 2.58 4.18 5.58 6.88 

10 5.71 6.37 7.06 7.67 6.66 8.14 9.65 11.18 
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