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Abstract: This study presents the development and validation of a comprehensive numerical simulation 
model for drying equipment designed for vegetal matter, utilizing automatic process control and moisture 
estimation through a neural network. The system, modeled in AMESim, includes a TLUD (Top-Lit UpDraft) 
gasifier as the heat source, an air flowrate regulation mechanism controlled by butterfly valves, and a drying 
chamber. A PID (Proportional-Integral-Derivative) controller with autotuning capabilities manages the air 
flowrate to maintain the desired drying temperature. Additionally, a neural network, trained with experimental 
data, estimates the relative moisture and mass of the drying leaves, achieving high training and validation 
fidelities of 99.99%. The simulation results highlight the effectiveness of the PID controller in stabilizing the 
drying environment and the neural network's accuracy in predicting moisture content. Also these 
demonstrate significant potential for optimizing drying processes in agricultural applications, enhancing both 
efficiency and product quality. Future research directions include expanding the dataset, exploring other 
machine learning algorithms, and integrating advanced sensor technologies for real-time data acquisition 
and process control.   
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1. Introduction  

In the context of the deepening global energy and food crisis, the use of renewable energy in 
agricultural production processes, increasing energy independence from the national energy 
system, and enhancing the energy efficiency of processing equipment have become essential 
concerns for specialists in the field. The method of preserving plant products through enzymatic 
inactivation (dehydration) is considered by experts to be the most effective and healthiest long-
term preservation method, ensuring food safety for consumers. Through dehydration, products 
significantly concentrate their nutritional and organoleptic properties, having a higher content of 
active principles compared to fresh products [1]. 
An important direction addressed in research on the dehydration preservation of vegetables and 
fruits involves the use of solar energy or energy obtained from other renewable sources in this 
process. It can be demonstrated that by using relatively simple equipment, the dehydration process 
can be conducted so that the final products are of the highest quality, and preservation costs are 
minimized [2]. 
Within INOE 2000-IHP, there have been concerns related to research-development-innovation-
assimilation of new products and technologies, which will constitute progress for the Romanian 
manufacturing of convective dryers. At the same time, efforts have been made to create energy-
independent equipment, in which the thermal energy required for the dehydration process is 
produced with the help of a 10 kW thermal generator operating on the TLUD principle, from locally 
available biomass. The air-to-air heat exchanger will provide a clean drying agent (hot air), with 
major implications on the quality of the products and for consumer health. 
The automatic control of the drying process using a Top-Lit UpDraft (TLUD) device is an innovative 
technology that combines the principles of controlled combustion and efficient drying. A TLUD is a 
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gasifier that uses biomass to produce syngas and heat, commonly used in cooking or heating 
applications. In the context of drying plant materials, TLUDs can be integrated into an automatically 
controlled drying system. 
Using this type of system, the process of dehydrating plant products follows a cycle diagram, 
correlated with the technology characteristic of each species, including the following phases, as 
shown in Figure 1 [3]. 
 

 

Fig. 1. Phases of the dehydration process 

 
The Heating phase, in which all thermal energy is transferred to the products, represents a critical 
stage in the dehydration process. To ensure efficient heat transfer to the products, the surrounding 
atmosphere must be saturated, or the partial pressure of water vapor on the surface of the 
products must equal the partial pressure of water vapor in the air. During this phase, the 
temperature of the products gradually increases until it approaches the temperature of the drying 
agent (hot air). For this reason, it is essential that the temperature during this phase does not 
exceed the threshold that could cause product deterioration [4]. 
The Conditioning phase is generally used for products at risk of crust formation or those with low 
external moisture, aiming to equalize moisture throughout the product to facilitate the drying 
process. In this stage, the temperature is kept constant, and moisture is regulated to produce 
controlled moistening of the products. 
The Drying phase is the most crucial stage of the entire process. In this phase, water moves from 
areas of higher moisture content in the products to those with lower moisture content through 
diffusion. The evaporation of water from the surface of the products occurs at a certain rate, which 
must match the diffusion rate to prevent the phenomenon of surface hardening. 
The Equalization phase is recommended for porous products dried in hot and humid periods. 
After the drying process is completed, the products undergo a low-moisture heat treatment to close 
the pores and prevent rehydration. 
The Cooling phase generally occurs by expelling hot air through controlled dampers. If precise 
cooling is required, heating control is also practiced to maintain a gradient. Moisture is not 
controlled. 
This paper presents the development and validation of a comprehensive numerical simulation 
model for drying equipment for plant raw materials (medicinal and aromatic plants), using 
automatic process control and moisture estimation through a neural network. 
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2. Material and Method  

Figure 2 shows the testing scheme of the convective dryer [4]. The acquired parameters are: 
chamber temperature, primary air flowrate, and secondary air flowrate. The drying chamber 
temperature is measured using a Pt100 probe with a range of 0…200 °C. The 4…20 mA signals 
from the temperature converter and air flowmeters are coupled to the 0…10 V inputs of the 
acquisition board using 250 Ohm resistors connected to GND. The air flowmeters are used to 
monitor and regulate the primary and secondary air flowrates. A Proportional-Integral-Derivative 
(PID) control block from the LabView library is used to regulate the temperature. The PID controller 
output is monitored with two comparator blocks, and at two thresholds, positive and negative, of 
the controller signal variation, two digital outputs of the data acquisition board are commanded to 
extend or retract the actuator that controls the combustion gas flow from the TLUD generator. The 
actuator extension or retraction is achieved with two relays, one powering the actuator with polarity 
+/- and one powering the actuator with polarity -/+. 
 

 

Fig. 2. Testing scheme of the convective dryer 

   
The values of the monitored parameters can be tracked in real-time on the application panel, which 
allows for the plotting of diagrams for parameters that are interdependent, and the acquisition of 
data that reflects the evolution of the parameters over time, for preset intervals or for the entire 
operation cycle. 
Laboratory tests focused on how the equipment achieves the technical and functional parameters 
imposed by the dehydration technology for mulberry leaves, which have medicinal properties in the 
treatment of diabetes [6]. 
The TLUD gasification reactor converts the energy of the biomass into thermal energy of the 
combustion gas-smoke mixture (resulting from the combustion of syngas, obtained in the 
gasification process). The heat transfer from this to the dehydration agent takes place in the heat 
exchanger located inside the dryer, at the level of its radiant surfaces [7 - 9]. 
The biomass is introduced into the reactor's fuel basket (2-3 cm below the syngas combustion air 
supply holes) and rests on a grate through which primary air for gasification passes from bottom to 
top. The solid fuel is ignited at the top of the load. Rapid pyrolysis creates a front of incandescence 
at the top and continues downward into the biomass in the reactor. Rapid pyrolysis results in 
syngas, tar, and biochar.  
The tars pass through the incandescent charcoal layer, are cracked, and are completely reduced 
due to the heat radiated by the pyrolysis front and the flame located at the upper level. The 
resulting gas mixes with the secondary air introduced into the combustion zone through orifices at 
the top of the reactor. The high-turbulence mixture burns with a flame at temperatures around 
900°C. Thermal power is regulated by varying the primary and secondary air flows. 
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The value of the hot air temperature in the drying chamber is determined by the position of the disc 
closing the combustion gas passage sections in the flowrate regulation device.  
In this study, we developed a comprehensive numerical simulation model of a medicinal plants and 
fruit drying system using AMESim. The primary components of the system include a TLUD (Top-Lit 
UpDraft) type gasifier as a hot and dry air source, an air flowrate regulation device, and a drying 
chamber. The air flowrate regulation is managed by two butterfly valves with flaps with an offset of 
90 degrees, which control the flowrate of hot air to the drying chamber. To maintain the prescribed 
temperature within the drying chamber, a PID controller is employed. This controller adjusts the air 
flowrate based on real-time temperature readings to compensate for variations in the gasifier’s 
output temperature. 
The TLUD gasifier serves as the heat source for the drying system, producing hot air through the 
combustion of biomass. The temperature output from the gasifier is inherently variable, 
necessitating a dynamic control mechanism to ensure a consistent drying environment. The PID 
controller is configured with autotuning capabilities, allowing it to adapt its parameters 
automatically for optimal performance. The autotuning feature is crucial for maintaining the desired 
temperature in the drying chamber, as it continuously adjusts to compensate for any deviations 
caused by fluctuations in the gasifier’s temperature. 
Additionally, a neural network is integrated into the simulation to estimate the relative moisture and 
mass of the drying leaves. This neural network is trained using experimental data on temperature 
and drying time to provide accurate predictions of the relative moisture content and mass loss of 
the leaves throughout the drying process. The neural network's architecture comprises six dense 
layers, each with 100 neurons and Rectified Linear Unit (ReLU) activation functions, trained using 
the stochastic gradient descent method. The training and validation fidelities of the neural network 
are both exceptionally high, at 99.99%, ensuring reliable and precise estimations. These 
estimations are crucial for monitoring and optimizing the drying process, ultimately improving the 
quality and efficiency of the dried product. 
Figure 3 illustrates the overall structure of the drying equipment simulation model. It includes the 
key components such as the TLUD type gasifier, the heat source, the air flowrate regulation 
system, the drying chamber, the PID controller, and the neural network. The comprehensive 
network diagram helps in visualizing how each part of the system interacts and integrates within 
the simulation framework. 

 

Fig. 3. Numerical simulation network of the drying equipment for vegetal matter with automatic process 
control and moisture estimation by means of a neural network 
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Figure 4 shows the parameters and configuration settings of the e-PID controller used in the 
simulation. Autotuning capabilities are highlighted, indicating that the controller can adjust its 
output to maintain optimal performance. The specific parameters shown would include gain 
settings, time constants and saturation settings, etc. 
 

 

Fig. 4. Parameters of the e-PID controller with autotuning 

 

Figure 5 details the architecture of the neural network used to estimate relative moisture and mass 
of mulberry leaves during the drying process. The diagram shows the input variables (time and 
temperature) and the output variables (mass and relative moisture), along with the layers and 
connections within the neural network. 

 

 

Fig. 5. Diagram of the neural network for estimating the relative moisture of mulberry leaves, with its inputs 
and outputs 
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Table 1 details the parameters of the neural network model used to estimate the relative moisture 
and mass of mulberry leaves during the drying process. The model, named 
"Model_moisture_mass_v1," is a static neural network featuring a total of six dense layers, each 
containing 100 neurons. The network employs ReLU activation functions across all layers, which 
helps in capturing non-linear relationships within the data. The neural network was trained using 
the stochastic gradient descent method, with a learning rate set at 0.0012 and a batch size of 16, 
ensuring efficient convergence during training. The model's training was conducted over 1,000 
epochs, resulting in exceptionally high training and validation fidelities of 99.99%. The network 
benefits from adaptive learning and data shuffling, further enhancing its accuracy and 
generalization capabilities. The input variables for the network are time (in seconds) and 
temperature (in degrees Celsius), while the output variables are mass (in grams) and relative 
moisture (in percentage). The training process was completed in 32 seconds, underscoring the 
efficiency of the model setup. 

 
                                              Table 1: Neural network parameters 

Model name Model_moisture_mass_v1 

Type of model Static Neural Network 

Training fidelity [%] 99.99 

Validation fidelity [%] 99.99 

Total trained epochs 1000 

Number of layers 6 

Layer types 6 x 'Dense' 

Number of cells 6 x 100 

Activation types 6 x 'ReLU' 

Training method Stochastic gradient descent 

Learning rate 0.0012004999999999995 

Batch size 16 

Adaptive learning True 

Data shuffling True 

Input variables ['Time [s]' and 'Temp [C]'] 

Output variables ['Mass [g]' and 'R_moisture [%]'] 

Training duration [s] 32.0 

3. Results and Discussions  

Figure 6 shows the performance metrics of the neural network, specifically the training and 
validation errors for estimating the relative moisture and mass of the leaves. It demonstrates how 
well the neural network has been trained and validated, indicating its accuracy and reliability in the 
simulation. 
Figure 6 provides a detailed visualization of the training and validation errors associated with the 
neural network used for estimating the relative moisture and mass of mulberry leaves during the 
drying process. This figure is crucial for assessing the performance and reliability of the neural 
network model implemented in the study. 
Training and Validation Process - The neural network model comprises six dense layers, each with 
100 neurons and ReLU activation functions, trained using the stochastic gradient descent method. 
The training process involved 1000 epochs, ensuring thorough learning and fine-tuning of the 
model parameters. The high training fidelity of 99.99% indicates that the model has effectively 
learned the underlying patterns and relationships within the training data. 
Analysis of Errors - The figure illustrates the temporal evolution of both training and validation 
errors throughout the training process. The training error curve (depicted in blue) demonstrates a 
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rapid decrease during the initial epochs, followed by a gradual convergence to a minimal error 
level. This indicates that the model quickly learns the fundamental features of the data and then 
fine-tunes to minimize the error. 
Similarly, the validation error curve (depicted in red) follows a comparable trend, showing a steady 
decline and eventual stabilization. The close alignment of the training and validation error curves 
suggests that the model generalizes well to unseen data, avoiding overfitting—a common issue in 
neural network training. The minimal gap between these curves further underscores the 
robustness of the model. 
Implications for Model Performance - The exceptionally low values of both training and validation 
errors reflect the neural network's high accuracy in estimating the relative moisture and mass of 
the leaves under the drying process. This high fidelity is crucial for reliable real-time monitoring and 
control of the drying process. Accurate moisture estimation allows for better regulation of drying 
conditions, ultimately enhancing the quality and efficiency of the dried product. 
Practical Significance - In practical terms, the neural network's performance, ensures that the 
drying system can maintain optimal conditions with minimal human intervention. The model's 
reliability in predicting key parameters enables more precise adjustments to the drying 
environment, leading to consistent product quality and reduced energy consumption. This is 
particularly important in agricultural applications, where variations in drying conditions can 
significantly impact the final product. 
Figure 6 effectively demonstrates the neural network's capability to accurately model and predict 
the drying process's critical parameters. The low training and validation errors attest to the model's 
reliability and robustness, making it a valuable tool for optimizing the drying of vegetal matter. 
Future enhancements, such as incorporating additional data types and advanced sensor 
technologies, could further improve the model's accuracy and applicability in diverse drying 
scenarios. 

 

 

Fig. 6. The training and validation error of the neural network for the two estimated parameters (relative 
moisture and mass of mulberry leaves during drying cycle) 

 
Figure 7 illustrates how the key parameters of the TLUD type gasifier, such as the outlet 
temperature, hot air flowrate and pressure, change over time. It highlights the dynamic behavior of 
the gasifier and the need for the PID controller to compensate for these variations to maintain 
consistent drying conditions. 
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Fig. 7. Time variation of the parameters of the TLUD type gasifier (outlet temperature, hot air flowrate, outlet 
and atmospheric pressure) 

 
Figure 8 shows the behavior of the butterfly valves, specifically the angles of the flaps, and how 
these adjustments regulate the flowrate of hot air to the drying chamber. This is crucial for 
understanding how the air flowrate regulation system maintains the desired temperature and 
airflow within the system. 
 

 

Fig. 8. Time variation of the angles of the flaps of the butterfly valves and of the flowrate of hot air regulated 
by them 

 
Figure 9 displays the temporal changes in the drying chamber’s temperature, the TLUD exhaust 
pipe temperature, and the pressures within the chamber and exhaust pipe. It provides insight into 
how well the system maintains the drying environment and the impact of gasifier output on the 
chamber conditions. 
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Fig. 9. Time variation of the temperature in the drying chamber, the temperature on the TLUD exhaust pipe 
and the pressure in the chamber and on the exhaust pipe 

 
Figure 10 presents a detailed analysis of the temperature variations on the TLUD exhaust pipe, 
including instantaneous values, moving averages, and mean values. It highlights the stability and 
fluctuations of the temperature over time, which are critical for understanding the thermal dynamics 
of the drying system. 
 

 

Fig. 10. Instantaneous variation over time of the temperature on the exhaust pipe of the TLUD, its moving 
average and its mean value 

 
Figure 11 shows how the desired and actual temperatures in the drying chamber vary over time, 
along with the instantaneous temperature adjustment error (± 0.2 °C). It illustrates the 
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effectiveness of the PID controller in achieving and maintaining the target temperature despite 
disturbances and fluctuations. 
 

 

Fig. 11. Time variation of the automatic adjustment parameters (desired temperature, achieved temperature 
and instantaneous temperature adjustment error in the drying room) 

 
Figure 12 shows the temperature-dependent changes in the angle of the butterfly valve disk and its 
frequency analysis (FFT). The FFT provides insight into the frequency components of the valve 
adjustments, which is useful for understanding the dynamic behavior and control actions within the 
system. 
 

 

Fig. 12. Time variation of the angle of the butterfly valve disk and its FFT 
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Figure 13 compares the estimated mass of mulberry leaves during the drying process with 
experimentally obtained values, highlighting the instantaneous error and RMSE. It demonstrates 
the accuracy of the neural network model in predicting the mass changes over time. 
 

 

Fig. 13. Comparison of the time variation of the mass of mulberry leaves during drying, values estimated by 
the neural network, experimentally obtained values, instantaneous error and root mean square error 

 
Similar to Figure 13, Figure 14 compares the estimated relative moisture with experimental values, 
showcasing the neural network’s accuracy. The instantaneous error and RMSE provide a 
quantitative measure of the estimation performance. 
 

 

Fig. 14. Comparison of the time variation of the relative moisture of mulberry leaves during drying, values 
estimated by the neural network, values obtained experimentally, the instantaneous error and the root mean 

square error 
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Figure 15 illustrates the energy dynamics of the drying equipment, including total power, used 
power, lost power and overall efficiency. The moving average helps in smoothing out fluctuations 
and provides a clear picture of the system’s energy performance over time. 
 

 

Fig. 15. Time variation of the total power, used power, lost power and efficiency of the drying equipment 
(moving average) 

4. Conclusions   

The research presented in this article has demonstrated the effectiveness and efficiency of a 
numerical simulation model for drying equipment tailored for vegetal matter, specifically integrating 
automatic process control and moisture estimation using a neural network. The study focused on 
developing and validating a comprehensive drying system using AMESim, incorporating key 
components such as a TLUD gasifier, an air flowrate regulation system, a PID controller with 
autotuning capabilities, and a neural network for moisture and mass estimation. The results offer 
significant insights into the dynamic interactions within the system and the potential for optimizing 
drying processes for agricultural applications. 
One of the primary conclusions drawn from this study is the critical role of the PID controller with 
autotuning in maintaining the desired drying conditions within the chamber. The controller's ability 
to dynamically adjust the air flowrate in response to real-time temperature variations from the 
gasifier has been shown to significantly enhance the stability and consistency of the drying 
environment. The autotuning feature allows the PID controller to adapt its parameters 
automatically, ensuring optimal performance despite the inherent variability in the gasifier's 
temperature output. This adaptability is crucial for achieving the precise temperature control 
required for efficient and uniform drying of vegetal matter. 
The integration of a neural network into the simulation model for estimating the relative moisture 
and mass of the drying leaves has proven to be highly effective. The neural network, trained with a 
substantial dataset, achieved exceptionally high training and validation fidelities of 99.99%. This 
high level of accuracy in moisture and mass estimation underscores the potential of machine 
learning techniques in enhancing the monitoring and control of drying processes. The use of six 
dense layers with ReLU activation functions and the stochastic gradient descent method for 
training contributed to the neural network's robustness and reliability. The successful 
implementation of this neural network demonstrates the feasibility of applying advanced data-
driven approaches to optimize agricultural drying systems. 
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The dynamic behavior of the TLUD gasifier, characterized by its variable temperature output, 
necessitated the development of a sophisticated control mechanism. The study highlighted the 
effectiveness of the PID controller in compensating for these temperature fluctuations, thereby 
maintaining consistent drying conditions. Additionally, the butterfly valves' regulation of hot air 
flowrate was shown to be pivotal in achieving the desired temperature within the drying chamber. 
The comprehensive analysis of the gasifier's performance, including outlet temperature, hot air 
flowrate, and pressure changes over time, provided valuable insights into the operational dynamics 
of the drying system. 
Furthermore, the comparison of estimated mass and relative moisture values with experimentally 
obtained data illustrated the neural network's accuracy and reliability. The low root mean square 
error (RMSE) in these comparisons validated the neural network's predictions, confirming its utility 
in real-time process monitoring and control. The study also demonstrated the neural network's 
ability to handle complex, non-linear relationships within the drying process, contributing to more 
precise and effective moisture management. 
Future research will be able to explore several avenues building upon the findings of this study. 
Firstly, expanding the dataset used for training the neural network to include a wider variety of 
vegetal matter could enhance the generalizability and applicability of the model. This would involve 
collecting experimental data from different types of fruits or parts/organs with active principles 
intended for the valorization of medicinal plants, thereby broadening the scope of the drying 
system. Additionally, investigating the potential of other machine learning algorithms, such as 
convolutional neural networks or long short-term memory networks, could offer further 

improvements in prediction accuracy and system performance. 
Another promising direction for future research is the integration of advanced sensor technologies 
to provide more granular and real-time data on the drying process. Implementing sensors that can 
measure additional parameters, such as air moisture, leaf surface temperature, and gas 
composition, would enrich the dataset and potentially lead to even more accurate neural network 
models. These enhancements could facilitate the development of a fully automated drying system 
capable of real-time adjustments based on comprehensive environmental data. 
Therefore, it can be stated that this study has successfully developed and validated a numerical 
simulation model for a plant and fruit drying system, incorporating advanced control mechanisms 
and machine learning techniques. The integration of a PID controller with autotuning capabilities 
and a highly accurate neural network for moisture estimation has demonstrated the potential for 
significant improvements in drying process efficiency and product quality. The findings underscore 
the importance of dynamic control and data-driven approaches in optimizing agricultural drying 
systems. Future research should focus on expanding the model's applicability and integrating 
advanced sensor technologies to further enhance the precision and automation of drying 
processes.  
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