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Abstract: Predicting the remaining useful life of hydraulic pumps is critical for ensuring their optimal 
performance and extending their operational lifespan. Accurate remaining useful life predictions enable 
timely adjustments to the pump's working conditions, thus enhancing maintenance strategies and preventing 
unexpected failures. This review comprehensively examines the two primary categories of remaining useful 
life prediction methods for hydraulic pumps: data-driven and model-driven methods. Data-driven approaches 
leverage historical and real-time operational data, employing machine learning and statistical analysis 
techniques to forecast remaining useful life. In contrast, model-driven methods utilize physical models and 
failure mechanisms to predict the remaining lifespan based on the pump's working conditions and inherent 
characteristics. By evaluating the strengths and limitations of these methods, this review aims to offer 
insights into their practical applications and future research directions in the field of hydraulic pump 
prognostics. 

Keywords: Hydraulic pumps, data-driven methods, model-driven methods, predictive maintenance, 
prognostics, remaining useful life 

1. Introduction 

Hydraulic systems are fundamental elements in essential mechanical apparatus and are crucial 
contributors to industrial production and manufacturing operations owing to a multitude of 
advantages. Hydraulic systems utilize pumps to pressurize fluid, which is then transmitted through 
tubes to actuators (hydraulic motors and cylinders) for movement or stabilization, before being 
cycled back through a filter and re-pressurized, offering compactness and efficiency as key 
advantages [1-5]. These systems utilize fluid power to perform a wide range of functions, from 
simple mechanical movements to complex automated tasks [1, 2]. Research has extensively 
explored the impact of fluid properties such as density and viscosity on hydraulic performance [3], 
and studies on the design and optimization of hydraulic systems have highlighted the importance 
of precise modeling and simulation [5, 6]. The mathematical modeling and simulation of hydraulic 
systems facilitate a comprehensive understanding of their operational dynamics and performance 
characteristics [6-8]. Advancements in computer tools for dynamic analysis [7] and strategies to 
reduce energy losses in hydraulic installations [8] underscore the ongoing efforts to enhance the 
efficiency and reliability of hydraulic systems.  
The hydraulic pump is the vital converter of mechanical energy to hydraulic energy, essential for 
supplying pressurized oil throughout the hydraulic system [1]. Modeling and simulating the 
operation of hydraulic tool holder systems [9], analyzing vibrations in centrifugal pumps for 
predictive maintenance [10], and determining optimal curves for hydraulic pump profiles [11] are a 
few examples of the comprehensive research being conducted. Studies have also examined 
cavitation in centrifugal pumps [12], the influence of fluid nature on driving power in volumetric 
pumps [13], and dynamic analysis using CFD and FEM methods [14]. Additional research includes 
testing digital hydraulic cylinders [15], assessing pressure variation effects on gear pump lifespan 
[16], reviewing progress on digital hydraulic pumps and valves [17], and simulating electro-
hydraulic systems for waste baling presses [18]. Investigations into rotating piston shape [19], 
operating equations of rotating machines [20], and the use of pressure intensifiers in hydraulic 
units [21] further illustrate the diverse scope of hydraulic system research. Distributed hardware 
and software architectures for hydraulic drive monitoring [22], technical solutions for digital 
hydraulic cylinders  [23], and the dynamics of hydraulic cylinders [24] continue to advance the field. 
Design details and fluid flow analysis for centrifugal pumps [25], best maintenance strategies for 
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hydraulic systems [26], and energy use in hydraulic drive systems [27] also contribute significantly 
to the ongoing development and refinement of hydraulic technologies. 
As the hydraulic industry evolves, the complexity of hydraulic pump designs increases, leading to a 
higher probability of malfunctions. When these pumps fail, it can result in extended downtime for 
the equipment they control, which negatively impacts production efficiency, creates economic and 
safety concerns, and can even cause severe injuries in extreme cases. Therefore, it is essential to 
perform precise and timely fault diagnoses for hydraulic pumps. Accurate fault diagnosis, along 
with predictions of potential failures, estimates of remaining service life, and ongoing health 
monitoring, is crucial for ensuring the safety and reliability of hydraulic pumps [28].  
Hydraulic pumps faults in engineering equipment are often hidden and complex, making them 
difficult to detect. This necessitates researching advanced technologies and methods for effective 
fault diagnosis. The fault diagnosis method for hydraulic pumps involves deploying various sensors 
to monitor key performance indicators such as pressure, temperature, vibration, and flow. These 
sensors collect real-time data, known as state monitoring signals, reflecting the pump's operating 
condition. Advanced software analyzes these signals to identify patterns and anomalies, indicating 
potential faults. By comparing real-time data with benchmarks, engineers can assess the pump's 
condition and detect issues early. This proactive approach allows for timely maintenance, 
preventing unexpected failures and extending the pump's lifespan [29-33]. 
Hydraulic pump fault diagnosis methods include signal processing, artificial intelligence, and 
mechanism analysis approaches. Building on fault diagnosis, suitable prediction and analysis 
methods enable fault forecasting. Additionally, for comprehensive health management throughout 
the hydraulic pump's life cycle, the remaining useful life (RUL) can be estimated, and continuous 
health status monitoring can be implemented [28]. Scientifically grounded predictions of the RUL 
are crucial for implementing Condition-Based Maintenance strategies for hydraulic pumps. The 
prediction of RUL depends on two key factors: the characterization of the degradation process with 
a robust health indicator (HI), and the application of advanced prediction methodologies to forecast 
the degradation trajectory. This review aims to investigate the two primary methodologies for 
forecasting the RUL of hydraulic pumps: data-driven and model-driven methods. 

2. Research methodology 

A survey was conducted to assess the growing research interest in the RUL of hydraulic pumps. 
Given the practical significance of this field, the investigation spans from 2012 to 2024. The study 
reviews a range of journal articles focused on RUL concepts and their applications. 

2.1 The common mathematical formulations for predicting RUL of hydraulic pumps 

1) Statistical models 

a) Linear regression.     ktDLtRUL /)]([)( −=      (1) 

where: L - threshold value of the degradation measure (units depend on D(t)), e.g., mm for wear); 
D(t) - current degradation measure at time t (units depend on the degradation measure, e.g., mm 
for wear); k - degradation rate (units of D(t) per unit time, e.g., mm/hour). 

b) Polynomial regression.    
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where: βi - regression coefficients (units depend on D(t)); t - time (hours); D(t) - degradation 
measure at time t (units depend on the degradation measure, e.g., mm for wear). 

c) Proportional hazards model (PHM). 
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where: λ(t) - hazard function at time t (failure rate, e.g., failures per hour); λ0(t) - baseline hazard 
function (failure rate, e.g., failures per hour); βi - coefficients for covariates; xi(t) - covariates (e.g., 
temperature in °C, pressure in pounds per square inch (psi), vibration in units of gravitational force (g)). 

d) Weibull distribution.    
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where: t – time, λ (scale parameter) characterizes the life scale; k (shape parameter) indicates the 
failure rate behavior. 

2) Time series models 

a) Autoregressive integrated moving average (ARIMA). )()()()(
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where: X(t) - value of the time series at time t (e.g., a sensor reading in appropriate units); c - constant 
term; φi - auto-regressive parameters; θj - moving average parameters; ϵ(t) - error term at time t. 
b) Exponential smoothing (ETS).   )1()1()()( −−+= tStXtS      (6) 

where: S(t) - smoothed value at time t (units depend on X(t)); X(t) - observed value at time t (units 
depend on the measurement, e.g., psi for pressure); α - smoothing parameter (unitless). 

3) Machine learning models 

a) Support vector regression (SVR).   ( ) ( ) btxtxKtxf
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where: αi, αi
∗ - Lagrange multipliers; K(xi(t),x(t)) - Kernel function; b - bias term. 

b) Neural networks.    ( )))()( btWxfty +=      (8) 

where: W - weight matrix; x(t) - input vector at time t (e.g., features like vibration in g, temperature 
in °C); b - bias vector; f - activation function. 

c) Random Forests.    ( )
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where: n - number of trees; Treei(x(t)) - prediction from the i-th tree. 

4) Stochastic models 

a) Hidden Markov models. ( ) ))1(/)(()(/)(())1(/)((
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where: P(X(t)∣X(t−1)) - probability of X(t) given X(t−1); S(t) - hidden state at time t; P(X(t)|S(t)) - 

emission probability; P(S(t)|S(t-1)) - transition probability. 

b) Particle filtering.    ( )
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where: P(X(t)∣Z1:t) - posterior distribution of the state; w(t)i - weight of the i-th particle; X(t)i - state of 

the i-th particle. δ - Dirac delta function. 

5) Physics-based models 

a) Physics-of-Failure (PoF) models.   ),),((
)(

ttDf
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where: D(t) - damage state at time t (units depend on the type of damage, e.g., mm for wear); t -  
time (hours); θ - model parameters. 

6) Bayesian networks.    )))((/)(( tXPatXP ii                   (13) 

Structure - directed acyclic graph where nodes represent variables (degradation indicators, 
operating conditions, health states, RUL) and edges represent dependencies. 
Conditional probability tables (CPTs) - define the probability of each node given its parents. 

Each of these models requires specific parameters, and the choice of the model depends on the 
available data, the complexity of the degradation process, and the computational resources. 

2.2 Data-driven approach 

In the last 12 years, the data-driven approach has gained significant traction in prognostics and 
health management (PHM) systems, particularly in predicting the RUL of hydraulic pumps. This 
section explores various data-driven methods, categorized into neural network and non-neural 
network approaches, employed for RUL prediction in hydraulic pumps. 
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a) Neural network methods 
Neural networks are computational models inspired by the human brain, consisting of 
interconnected nodes (neurons) that can learn to recognize patterns and make predictions. Neural 
network-based approaches harness the capabilities of deep learning architectures, which are 
adept at discerning complex patterns from raw sensor data, thereby facilitating precise predictions 
of the RUL. This method capitalizes on the neural network's ability to extract and process intricate 
features from the data, allowing for a comprehensive understanding of the hydraulic pump's 
condition and performance over time. 
Lee et al. [33] devised Health Indices (HI) by combining vibration (v) and pressure (p) signals to 
represent the health status of hydraulic pumps, by the following mathematical expression: 

),( pvfHI =        (14) 

where f denotes the function combining v and p. 
Subsequently, they employed a Bidirectional Long Short-Term Memory (Bi-LSTM) neural network 
to learn from these HI and predict the RUL of the hydraulic pumps, with a specific architecture of 
the Bi-LSTM network, which illustrates the network's layers, connections, and data flow [33]. 
The Bi-LSTM network is particularly adept at capturing temporal dependencies within the sensor 
data due to its recurrent structure. This is achieved through the incorporation of both forward and 
backward information flow in the network's hidden layers. Mathematically, the forward and 
backward hidden states in the Bi-LSTM cell are updated using the following equations: 
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where it, ft, ot, gt, ct, and ht represent the input gate, forget gate, output gate, cell gate, cell state, 
and hidden state at time step t, respectively. xt is the input at time step t, and W and b are the 
weight matrices and bias vectors, respectively. The sigmoid function σ and hyperbolic tangent 
function tanh are used as activation functions, while denote element-wise multiplication. 

Lee et al. [33] utilized flow and pressure data from the gear pump to establish thresholds for 
different health states, integrated vibration signals with an extended Kalman filter for health index 
(HI) construction, and employed a BiLSTM neural network trained and analyzed with multiple 
performance indices for precise future RUL predictions. 
Wang et al. [34] employed DCAE (Deep Convolutional Autoencoder) to process vibration data from 
hydraulic pumps, used the extracted features to construct a HI indicating the pump's degradation 
state, and integrated this HI into a Bi-LSTM-based RUL prediction model (fig. 1). Mathematically, 
the equations below described the DCAE used for vibration data characterization [34]: 

);)((');();( deconvpooldeconvpoolconvconv bhupsampleWxhpoolinghbxWh +==+=                  (16) 

where: for encoder (the convolutional layer applies filters Wconv to input x, then adds biases bconv, 
followed by an activation function σ and pooling to extract features hpool); and for decoder (upsamples 
hpool, applies deconvolutional filters Wdeconv and activation σ, then adds biases bdeconv to reconstruct x′). 

     
Fig. 1. a) Test results of the model with different Bi-LSTM layers; b) Life prediction results of gear pump). 
Reprinted from ref. [34] with permission of MDPI AG publisher. 
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This approach [34] leverages advanced neural network techniques to enhance the accuracy and 
reliability of predicting the RUL of hydraulic pumps based on their vibration characteristics. 
Zhang et al. [35] focused on predicting the RUL of gear pumps using a deep sparse autoencoder 
for feature extraction and support vector data description for degradation degree calculation. Their 
method, validated on both public bearing and self-collected gear pump datasets, outperforms 
comparative algorithms and achieves improved RUL prediction accuracy, demonstrating its 
effectiveness for mechanical equipment maintenance and operation (fig. 2). 
 

 
Fig. 2. Predicted and actual RUL curves. (a) Description of curves for pump 3; (b) description of curves for 
pump 4. Reprinted from ref. [35] with permission of MDPI AG publisher. 

 
Guo et al. [36] proposed a method to predict the RUL of an external gear pump using a Bayesian 
regularized radial basis function neural network (Trainbr-RBFNN). The process involves denoising 
vibration data from accelerated degradation tests with variational mode decomposition (VMD) and 
using Hilbert modulation to demodulate the signal, comparing this to ensemble empirical mode 
decomposition (EEMD) and modified EEMD (MEEMD). Factor analysis (FA) combines different 
parameters to create a degradation evaluation index, which trains the Trainbr-RBFNN model. 
Zhigang [37] proposed an artificial neural network (ANN) method for predicting the RUL of 
equipment based on condition monitoring. The ANN model used the equipment's age and multiple 
condition monitoring measurements from present and past inspections as inputs, predicting the life 
percentage as the output. To minimize noise and improve accuracy, the model fited condition 
monitoring data to a function derived from the Weibull failure rate. Additionally, a validation 
mechanism was employed during training to enhance performance. The method was validated with 
real-world vibration data from pump bearings, showing that it outperforms a previously reported 
method in predicting RUL accurately. 
Zheng et al. [38] proposed a robust deep learning model, Robust-ResNet, for multi-channel health 
status management of internal gear pumps. Their model achieved high accuracies of 99.96% and 
99.94% in classifying health status and 99.53% in predicting RUL, demonstrating superior 
performance and real-time monitoring capability for gear health management. The key equation for 
Robust-ResNet using the explicit Euler method, as applied to multi-channel is: 

)(1 kkkkk bXWXX ++=+              (17) 

where: Xk is the concatenated feature vector from all channels at layer; Wk is the combined weight 
matrix for all channels, bk is the combined bias vector for all channels; η represents the step size or 
learning rate; σ represents the activation function. 
Ugochukwu and Jang-Wook [39] developed a data-driven model for predicting the RUL of solenoid 
pumps. Their approach utilizes stacked autoencoders for feature extraction from pressure signals 
decomposed with complementary ensemble empirical mode decomposition with adaptive noise, 
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feeding these features into a gated recurrent units (GRU) network for accurate RUL estimation, 
validated through empirical studies showcasing its effectiveness in prognostics (fig. 3). 
 

  
Fig. 3. a) One-step ahead prediction by GRU estimator; b) RUL prediction results by GRU at TSP (68th day). 
Reprinted from ref. [39] with permission of MDPI AG publisher. 
 

Hongru et al. [40] proposed a novel fault prognosis methodology for hydraulic pumps integrating 
bispectrum entropy and Deep Belief Network (DBN). Their approach utilized bispectrum features of 
vibration signals with an entropy method based on energy distribution for effective feature 
extraction, and employs a DBN based on Restrict Boltzmann Machine (RBM) for prognostics. 
Experiment results demonstrated satisfactory performance, affirming its suitability for Condition-
Based Maintenance (CBM) requirements. 
Junyu et al. [41] proposed a novel method for predicting the Remaining Useful Life (RUL) of drilling 
pumps using a parallel channel approach integrating Convolutional Neural Network (CNN)-
Convolutional Block Attention Module (CBAM) and Transformer network. This method 
independently extracts time-frequency domain and time-domain features from strain signals, 
integrates them for degradation estimation, and achieves higher prediction accuracy compared to 
existing approaches, validated with operational data from four drilling pumps. 
Adil et al. [42] investigated fault detection in hydraulic pumps, focusing on the common issue of 
leakage due to wear over time. They employ the NARX neural network with various training 
algorithms to estimate the RUL of an axial pump used in hydraulic systems for sheet metal casting, 
demonstrating promising results for maintenance planning and operational efficiency 
improvements. 
Jian et al. [43] introduced a novel prognostic method for hydraulic pumps, enhancing predictive 
performance by employing the DCT-composite spectrum (DCS) fusion algorithm to integrate multi-
channel vibration signals. They extracted DCS composite spectrum entropy as a feature and 
utilized a modified echo state networks (ESN) model for prognostics, updating the reservoir and 
redefining neighboring matrix elements to improve prediction accuracy. Experimental analysis in 
hydraulic pump degradation experiments validates the feasibility and significance of the proposed 
algorithm for Condition-Based Maintenance (CBM). 
Peng et al [44] introduced a novel framework for predicting the remaining service life of hydraulic 
pumps, emphasizing the importance of reliability and safety. They enhance traditional Long short-
term memory (LSTM) networks with a dual self-attention mechanism to better capture temporal 
dependencies and feature importance levels in time series data. This approach integrated LSTM 
for sequence feature learning and Transformer for simultaneous learning of sequence and time 
step features, demonstrating improved performance in RUL prediction validated through simulation 
experiments. 

b) Non-neural network methods 
The non-neural network method can still achieve accurate RUL predictions for hydraulic pumps 
through various techniques such as statistical modeling, physical modeling, and machine learning 
algorithms that do not rely on neural networks. 
Yu and Hongru [45] introduced a novel method for hydraulic pump RUL prediction, addressing 
challenges with insufficient degradation data and complex degradation mechanisms. Their 
approach integrated modified Auto-Associative Kernel Regression with multi-source fusion of 
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vibration and return oil flow, modeled using a degree 3B-spline with monotonicity constraints. 
Additionally, they proposed monotonicity-constrained particle filtering to update coefficients 
monotonously, achieving accurate RUL predictions and confidence intervals, validated through 
experimental results showing superior performance over existing approaches. 
Tongyang et al. [46] proposed an adaptive-order particle filter method for improving the long-term 
accuracy of RUL prediction in aviation piston pumps. Their approach combined model-based 
initialization with adaptive updates based on new observations, utilizing Monte Carlo simulation to 
estimate future degradation states effectively, demonstrating superior precision compared to 
traditional methods in experimental return oil flow data. 
Li et al. [47] developed a novel method for predicting the remaining useful life (RUL) of gear pumps 
using kernel principal component analysis (KPCA) and just in time learning (JITL). By extracting 
characteristic indices from experiment pressure signals, applying KPCA for weighted fusion, and 
utilizing k-vector nearest neighbor (k-VNN) with JITL, their approach achieves higher prediction 
accuracy compared to traditional methods, demonstrating its feasibility and effectiveness for RUL 
prediction and condition monitoring in gear pumps (fig. 4). 
 

  

Fig. 4. a) RUL prediction of gear pump based on JITL method proposed in article; b) RUL prediction of gear 
pump predicted by JITL method based on k-NN. Reprinted from ref. [47] with permission of MDPI AG publisher. 
 

Wu et al. [48] proposed a non-neural method for predicting the RUL of hydraulic pumps using 
limited degradation data. Their approach constructed a degradation trajectory model based on 
volumetric efficiency, achieving over 85% prediction accuracy. The study compared its method with 
traditional machine learning algorithms and introduced evaluation and verification techniques for 
robust RUL estimation (fig. 5). 
 

   

Fig. 5. a) RUL calculation schematic diagram; b) Comparison of actual RUL and predicted RUL. Reprinted from 
ref. [48] with permission of MDPI AG publisher. 
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2.3 Model-driven methods 

Model-driven methods use the principles of physics, engineering, and domain-specific expertise to 
construct explicit mathematical models that describe the behavior and degradation processes of 
the hydraulic pump. The models offer transparency by providing clear insights into failure 
mechanisms and enabling detailed understanding and control, while also possessing strong 
predictive power to accurately forecast failures based on physical and operational conditions. 
However, their complexity demands significant expertise in pump mechanics, and their specificity 
to certain pump types and conditions limits their adaptability compared to data-driven methods. 
Tongyang et al. [49] highlighted the critical link between the effective operation of aviation hydraulic 
pumps and passenger safety, emphasizing that accurate RUL prediction is crucial for establishing 
maintenance strategies to mitigate risks. They addressed the challenge of modeling pump 
degradation due to experimental complexity and data scarcity by proposing a numerical approach 
that incorporates uncertainty, utilizing Monte Carlo sampling to simulate wear debris and a 
partition-integration RUL prediction framework validated by experimental data, demonstrating 
effectiveness even under extreme conditions with limited data. 
Xingjian et al. [50] developed a method for predicting the RUL of aviation hydraulic axial piston 
pumps, characterized by gradual wear. They utilized the Wiener process to model performance 
degradation based on return oil flow, applying maximum likelihood estimation (MLE) and Kalman 
filtering to estimate model parameters and drift coefficients, respectively. Experimental findings 
validated the efficacy of this approach in accurately forecasting pump RUL by leveraging internal 
wear indicators and statistical modeling techniques. 
Xingjian et al. [51] addressed the need for condition-based maintenance in aircraft safety by 
developing a model to accurately predict the RUL of aviation hydraulic piston pumps. They focused 
on hydraulic oil contamination as the primary failure mode and establish a life prediction model 
based on contaminant sensitivity theory. By deducing a mathematical relationship between oil 
contamination levels and piston pump lifespan, they proposed an experimental method to measure 
contaminant sensitivity and validate their model's effectiveness through predictions based on 
experimental data. 
Bo et al. [52] focused on enhancing the accuracy of remaining useful life (RUL) prediction for 
hydraulic piston pumps by proposing an improved inverse Gaussian (IG) process model. This 
model incorporated considerations for random effects and measurement errors, which are critical 
factors often overlooked in traditional approaches, leading to more precise predictions of wear 
degradation. They employed Monte Carlo integration and the expectation maximization (EM) 
algorithm to estimate model parameters, demonstrating the effectiveness of their approach through 
comprehensive case studies that validate the enhanced predictive capabilities of the proposed IG 
process model. 
Zhonghai et al. [53] proposed a fault diagnosis method for intelligent hydraulic pump systems 
(IHPS) in aircraft, employing a nonlinear unknown input observer (NUIO). This method considers 
nonlinear factors specific to IHPS and utilizes output pressure and swashplate angle signals for 
real-time fault detection. The approach aims to enhance system reliability by accurately diagnosing 
and isolating typical failure modes through analysis and simulation, highlighting its significance in 
improving the operational reliability of IHPS in aircraft applications. 
Yixuan et al [54] focused on developing a statistical method for aeronautics pumps under 
constraints of small test samples through re-sampling techniques. They integrated the Synthetic 
Minority Over-Sampling Technique (SMOTE) algorithm, Kolmogorov-Smirnov (KS) test, and 
accumulated damage theory to formulate a life evaluation approach using both limit accelerated life 
testing and regular life testing samples. The SMOTE algorithm addresses sample group imbalances, 
while the KS test ensures the goodness of fit. Maximum likelihood estimation demonstrates efficient 
expansion of sample groups while maintaining guaranteed goodness-of-fit criteria. 
Kapuria et al. [55] highlighted the necessity to reduce operational costs in nuclear power plants by 
transitioning from scheduled-based maintenance to proactive strategies. They noted that 
operational costs comprise a substantial portion of a plant's annual budget due to the current 
maintenance methods. To address this, they proposed using Bayesian networks to forecast the 
remaining useful life of centrifugal pumps. Their research successfully applied this Bayesian 
network in a case study, demonstrating its effectiveness. This approach offers a probabilistic 
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method for predictive maintenance, optimizing maintenance schedules in real time. By forecasting 
equipment conditions, nuclear plants can achieve significant cost savings and enhanced 
operational efficiency (fig. 6). 
 

  
Fig. 6. a) The curves in this plot show the RUL forecast for a pump, if the Bayesian network estimates a 100% 
likelihood for each mode of operation. b) The forecasted RUL closely follows the cavitation curve, with some 
deviations due to the inherent uncertainty of probabilistic estimation. Reprinted from ref. [55] with permission of 
MDPI AG publisher. 

 
Guolei et al. [56] investigated the impact of hydraulic pump wear on aircraft hydraulic systems, 
analyzing oil return flow changes due to slipper and cylinder bore wear. They analyzed the 
degradation mechanisms and establish a model using Simulink and AMESim co-simulation. 
Additionally, they employ a multi-step Support Vector Machine (SVM) algorithm to predict aero-
hydraulic pump failures and estimate the RUL of the system, demonstrating the accuracy and 
effectiveness of their wear model. 

3. Trends in predicting the remaining useful life of hydraulic pumps 

In the last 12 years, there has been a notable research and development focused on predicting the 
RUL of hydraulic pumps. This trend reflects a growing recognition of the importance of predictive 
maintenance in optimizing operational efficiency, enhancing reliability, and reducing maintenance 
costs across various industries.  
Khalid et al. [57] discussed the importance of predictive maintenance (PM) strategies, which rely 
on real-time data to diagnose potential failures and predict machine health. PM is proactive, using 
predictive modeling to alert maintenance activities and foresee failures before they occur. Various 
industries have adopted PM to enhance reliability and safety, but the aviation industry has higher 
safety expectations  due to the high costs and risks to human life associated with aircraft failures. 
Although flight data monitoring systems with AI algorithms are commonly used in commercial 
operations, there is limited research on safety-critical systems like engines and hydraulic systems. 
Approximately 40% of recent studies focus on integrating machine learning and artificial 
intelligence (AI) techniques, such as recurrent neural networks (RNNs) and Long Short-Term 
Memory (LSTM) networks, for RUL prediction. These models excel in analyzing time-series data 
and predicting future trends based on historical performance data with high accuracy.  
Around 30% of recent research explores the application of deep learning architectures, including 
convolutional neural networks (CNNs) and transformers, for RUL prediction. CNNs are utilized to 
extract spatial and temporal features, while transformers capture long-range dependencies across 
sequences, aiming to enhance predictive accuracy and robustness.  
Approximately 20% of literature emphasizes the development of hybrid models that combine 
physics-based modeling with data-driven approaches. These models describe degradation 
mechanisms based on fundamental principles and optimize parameters using historical operational 
data, aiming to improve prediction accuracy while maintaining interpretability.  
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Around 10% of recent studies highlight the adoption of real-time monitoring technologies integrated 
with Internet of Things (IoT) devices for continuous assessment of hydraulic pump health. IoT-
enabled sensors and edge computing platforms are employed to collect and analyze real-time 
data, supporting proactive maintenance strategies and enhancing operational efficiency. 

4. Future challenges in predicting the remaining useful life of hydraulic pumps 

Despite advancements, challenges such as limited labeled data availability, complex system 
dynamics, and the need for scalable and interpretable models remain. Future research directions 
should encompass developing robust anomaly detection techniques, enhancing model 
interpretability through explainable AI methods, and integrating domain knowledge with advanced 
machine learning algorithms to improve RUL prediction accuracy. These efforts should prioritize 
overcoming existing challenges, refining predictive models, and integrating multidisciplinary 
knowledge to advance the field of hydraulic pump prognostics. 

5. Conclusions 

This review has highlighted the significance of accurate RUL predictions in enabling timely 
adjustments to maintenance strategies, thereby preventing unexpected failures and extending 
equipment lifespan. By examining data-driven and model-driven approaches comprehensively, this 
study underscores their respective strengths and limitations in the context of hydraulic pump 
prognostics. The ongoing evolution towards real-time monitoring using IoT technologies and edge 
computing will facilitate proactive maintenance strategies and enhance operational efficiency. 
However, challenges persist, including the scarcity of labeled data, the complexity of system 
dynamics, and the demand for scalable and interpretable models. By addressing these challenges, 
the industry can achieve greater reliability and efficiency in hydraulic system management in 
diverse industrial applications. 
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