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Abstract: This paper examines transient regimes in mobile technological equipment that initiate oscillatory 
processes within hydrostatic systems driven by rotary engines. It provides a detailed analysis of the 
excitation sources responsible for these dynamic behaviors, particularly within hydraulic circuits that operate 
the working tool. The study highlights the dynamic characteristics of these systems, including pressure 
resonance observed during rapid acceleration (when the pump shaft's angular velocity approaches the 
system's natural frequency), command instability, and the resulting effects on the motion precision of the 
working tool. Additionally, the conditions for the occurrence of magnitude and phase resonances in the 
driving pressure are evaluated. 
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1. Introduction  

As known, the dynamic instability phenomenon in hydrostatically driven equipment manifests 
through sudden variations in hydraulic pressure without an obvious cause. This instability often 
occurs in new equipment when the hydrostatic drive system has not been thoroughly analyzed for 
dynamic behavior. The instant pressure variations are linked to sudden load increases on the work 
components, which may suggest the presence of dynamic phenomena like mechanical resonances 
[1,2]. In this context, the volumetric pump of the hydraulic system acts as a source of harmonic 
perturbations. The pulsations in the pump's output flow can lead to pressure fluctuations, which 
resemble resonance phenomena seen in mechanical systems with harmonic excitations. Some 
studies [3,4] have identified similarities between the behavior of rotating mechanical systems with 
viscous damping and hydraulic systems with rotary motors.  
In the field of hydraulic oscillation research, Wylie [5,6] made significant contributions by advancing 
the impedance method for determining hydraulic resonance within systems. In 1970, Chaudhry [7] 
introduced an alternative approach to predict the frequency response of hydraulic systems, while 
also working to refine and organize oscillatory flow equations using the transfer matrix method. 
Suo and Wylie [8] further explored hydraulic oscillations in pressurized systems, offering additional 
improvements to hydraulic resonance analysis. To address transient events in complex piping 
systems, Kim [9] applied the impedance matrix method, incorporating initial conditions and time-
history data.  
In this paper the author aims to highlight the conditions under which such resonance phenomena 
in hydrostatic systems arise. When resonance phenomenon occurs, it results in a pressure 
increase beyond the system's stable state, often accompanied by an increase in noise, unintended 
activation of hydraulic safety valves, and dynamic stress on system components, potentially 
affecting their durability and performance. 

2. Theoretical background 

Let's proposed a hydrostatic drive system that consists of rotative motor, which acts the working 
tool of a technological equipment, like vibratory roller (Figure 1). Thus, during the startup process 
of a vibratory roller, fluid flow in the pipelines becomes obstructed, causing an impact on the 
hydraulic vibration system. The load applied to the motor creates resistance to the hydraulic oil 
flow, resulting in a reduction in motor speed. According to fluid dynamics theory, a decrease in fluid 
flow rate inevitably leads to an increase in system pressure. The greater the drop-in flow rate, the 
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higher the resulting pressure rise. As the total energy of the fluid is converted into pressure energy, 
the hydraulic system experiences rapid pressure fluctuations, leading to the occurrence of 
instantaneous high pressure and hydraulic shocks.  

 

Fig. 1. Single drum vibratory roller hydraulic circuit (Bomag Bw 213) 

 
For all types of hydraulic circuits (both open and closed systems), the main components include a 
hydraulic pump, control valves, actuators (such as cylinders or rotary motors), reservoirs, filters, 
and piping or hoses, as shown in Figure 2. These components work together to ensure the efficient 
transfer of hydraulic energy to perform various tasks. This diagram will form the basis for the 
development of the study in this paper. 

 

Fig. 2. The drive system model: 
SE - energy source; P - pump; CH - hydraulic circuit; M – hydraulic motor; OL - rotative working tool; 

 R - pump debit regulator; T - hydraulic tank. 

 
The expression for evaluating the output flow (𝑄𝑃) from the hydraulic circuit is [10] 

𝑄𝑃 =
𝑉𝑝𝜔𝐼

2𝜋
=

𝑉𝑂𝑀𝜔𝐸

2𝜋
+ 𝛼𝑀𝑅𝑝 + 𝛽𝑀𝑅𝑝,̇

                                      
(1) 

where 𝑉𝑂𝑀 represents the volume of the hydraulic agent content in the rotative engine, 𝜔𝐸 is the 

rotational speed at the axle of the hydrostatic engine (for the working element), 𝛼𝑀𝑅 is the 
coefficient of the volumetric losses of the hydraulic agent from the system (proportional to the 
pressure 𝑝), and 𝛽𝑀𝑅 is the coefficient that define the hydraulic capacity of the circuit (proportional 

to the derivative of pressure 𝑝 with respect to time). 
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In the circuit, the pump P and the hydraulic motor M can be considered, of the constructive type 
with axial pistons, with an inclined block or in disc construction. If the aim is to highlight the effects 
of the pulsation of the flow rate of the pump 𝑄𝑃 for a set of m pistons being in the pumping action, it 
can be evaluated with expression:  

𝑄𝑃 = 2𝑟𝐴𝑝𝑠𝑖𝑛𝛼 ∑ 𝑠𝑖𝑛𝜑𝑖 ,𝑚
𝑖=1

                                           
(2) 

where  is the angle of pump block or disk, r is the disposition radius of the pump pistons, Ap is the 

piston area, andi represents the angular motion at the spindle pump. In typical cases of axial 
piston pumps with seven pistons (commonly used in the drive circuits of vibratory rollers), the 
pump flow rate can be expressed as: 

𝑄𝑝 =
𝑞0𝜔𝐼

2𝜋
sin(𝜔𝐼𝑡 + 𝜑0),

                                       
(3) 

where 

𝑞0 = 2𝑟𝐴𝑝𝑠𝑖𝑛𝛼 ∙
𝑠𝑖𝑛

𝑚𝜋

7

𝑠𝑖𝑛
𝜋

7

,

                                         
(4) 

and 

𝜑0 =
(𝑚−1)𝜋

7
.

                                               
(5) 

Therefore, the equation of dynamic balance at the motor shaft, deduced by the kineto-static 
method, is [10] 

𝑀𝐼 = 𝐽�̈� =
𝑉0𝑀�̇�

2𝜋
− 𝜒𝑀𝑅�̇� − 𝑀𝐸 ,

                                          
(6) 

where 𝐽 represents the mechanical moment of inertia of all movable elements (reduced to the axis 

of the rotary engine), 𝜑 is the angular motion at the engine shaft, 𝜒𝑀𝑅  is the adjustment factor of 

the cylinder volume of the motor, and 𝑀𝐸 is the resistance moment developed to the working tool 
by the external medium (which must be kept constant regardless of the roller's response to the 
continuous variation in the degree of soil compaction). To simplify the mathematical model, 
moment losses caused by dynamic flow forces, Coulomb friction forces, and aerodynamic friction 
forces, etc., are neglected. 

3. Mathematical modeling 

Processing the terms of the Eqns. (1), (3) and (6) leads to the mathematical modelling of the 
hydrostatic circuit with rotary motor.  

        
�̈� + 𝑎1�̇� + 𝑎2𝑝 = 𝑎3𝑀𝐸 + 𝑎4𝜔𝐼

2𝑐𝑜𝑠(𝜔𝐼𝑡 + 𝜑0) + 𝑎5𝜔𝐼𝑠𝑖𝑛(𝜔𝐼 + 𝜑0),
        

(7) 

 where 𝑎1 =
𝛼𝑀𝑅

𝛽𝑀𝑅
+

𝜒𝑀𝑅

𝐽
, 𝑎2 =

1

𝐽𝛽𝑀𝑅
(

𝑉0𝑀
2

4𝜋2 + 𝛼𝑀𝑅𝜒𝑀𝑅), 𝑎3 =
𝑉0𝑀

2𝜋𝐽𝛽𝑀𝑅
,  𝑎4 =

𝑞0

2𝜋𝛽𝑀𝑅
,  𝑎5 =

𝜒𝑀𝑅𝑞0

2𝜋𝐽𝛽𝑀𝑅
. 

 
By incorporating the expressions for the dynamic factors and simplifying the terms on the right-
hand side of the preceding equation, the resulting expression is obtained as follows [11] 

�̈� + 2𝜁𝑀𝑅𝜔𝑀𝑅�̇� + 𝜔𝑀𝑅
2 𝑝 = 𝐻𝑀𝑅 + Π𝑀𝑅𝑠𝑖𝑛(𝜔𝐼𝑡 + Φ),                        (8) 

with the description of the involved parameters in the Table 1.  

In Eq. (8) it is considered transient flows that represents the intermediate flow conditions when the 
flow is changed from one steady state to another. Thus, depending upon the characteristics of the 
system and of the excitation, a disturbance in a piping system may be amplified with time instead 
of decaying and may result in severe pressure and flow oscillations (phenomenon 
called resonance). In addition, the periodic dynamic force of the excitation generated by the 
vibration system incorporated into the roller’s drum causes the pressure and flow in the entire 
system to oscillate at the period of the excitation, being named steady-oscillatory flow.  
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                                                                             Table 1: Parameters identification from Eq. (8) 

Description of the parameters Symbol Formula 

Natural pulsation of the hydro-mechanic 
system 

𝜔𝑀𝑅 
𝑉𝑜𝑀

2𝜋
√

2

𝐽𝐶ℎ
[𝑠−1] 

Damping factor 𝜁𝑀𝑅 

√
𝐽

𝐶ℎ

2𝛼𝑀𝑅 + 𝜒𝑀𝑅
𝑉0𝑀

𝜋
√2

 [−] 

Disturbing factor due to the resistant 
torque at the working tool 

𝐻𝑀𝑅 𝑉0𝑀

2𝜋

𝑀𝐸

𝐽

2

𝐶ℎ
 [𝑁/𝑚2𝑠2] 

Excitation magnitude Π𝑀𝑅 
𝑞0𝜔𝐼

2

𝜋𝐶ℎ

√1 + (
𝜒𝑀𝑅

𝐽𝜔𝐼
)

2

[𝑁/𝑚2𝑠2] 

Initial phase of the excitation 𝜙 
𝜙 = 𝜑0 + 𝑎𝑟𝑐𝑡𝑔

𝐽𝜔𝐼

𝜒𝑀𝑅
 [𝑟𝑎𝑑] 

 
An analytical solution of the differential equation (8) has the expression 

𝑝 = 𝑝1 + 𝑝2 = 𝑝0𝑒−𝜁𝑀𝑅𝜔𝑀𝑅𝑡𝑠𝑖𝑛(𝜔𝑀𝑅√1 − 𝜁𝑀𝑅𝑡) + 𝑝𝑠 + 𝑝0𝑠𝑖𝑛(𝜔𝐼𝑡 + 𝜙0)             (9) 

but, for the phenomenon analyzed in this paper presents interest only pressure that described the 
behavior of the working steady state, and then we used the analytical solution as the next form 

𝑝 = 𝑝𝑠 + 𝑝𝑟 sin(𝜔𝐼𝑡 + 𝜙0)                                                       (10) 

where ps is the static state system pressure and, respectively, pr is the overpressure due to the 
resonance phenomenon. 

𝑝𝑠 =
2𝜋𝑀𝐸

𝑉0𝑀
,                                                               (11) 

𝑝𝑟 =
𝑞0

𝜋𝐶ℎ

𝜇2√1+𝜀2

√(1−𝜇2)2+(2𝜁𝑀𝑅𝜇)2
.                                               (12) 

We denote the relative damping of the hydro-mechanic system as 𝜀 =
𝜒𝑀𝑅

𝐽𝜔𝐼
 and the initial phase of 

the pressure as 

𝜙0 = 𝑎𝑟𝑐𝑡𝑔
𝑡𝑔𝜑0[𝜀(1−𝜇2)+2𝜁𝑀𝑅𝜇]+(1−𝜇2)−2𝜀𝜁𝑀𝑅𝜇

𝜀(1−𝜇2)+2𝜁𝑀𝑅𝜇𝑡𝑔𝜑0[(1−𝜇2)−2𝜀𝜁𝑀𝑅𝜇]
.                                  (13) 

4. Numerical scenarios simulation 

The pressure resonance phenomenon, as highlighted by Eq. (12), corresponds to a similar 
phenomenon observed in mechanical systems. It is characterized by a sudden increase in 
pressure beyond the steady-state working value when the angular speed of the pump spindle 
matches the natural pulsation of the hydro-mechanical system, respectively: 𝜔𝐼 = 𝜔𝑀𝑅 when 𝜇 = 1 

and  𝜁𝑀𝑅 = 1. 
The pressure amplification is incorporated into the evidence through the magnitude factor 

𝛺𝑝 =  
𝑝𝑟

𝑝0
=

𝜇2√1 + 𝜀2

√(1 − 𝜇2)2 + 4𝜁𝑀𝑅
2 𝜇2

.        

 

(14) 

where p0 = q0/(Ch) represents the static pressure developed by a single piston in the pump. 

Since the denominator in Eqn. (13) is the sum of squares, the magnitude factor p1 remains finite for 
any value of the relative pulsation μ. Pressure magnitude resonance occurs when the 𝛺𝑝 factor 

reaches its maximum value. The resonance pulsation value is determined by nullifying the 
derivative of the p1 magnitude factor with respect to μ, leading to the following result: 



ISSN 1453 – 7303                                                                   “HIDRAULICA” (No. 4/2024) 
Magazine of Hydraulics, Pneumatics, Tribology, Ecology, Sensorics, Mechatronics 

 

  
97 

 
  

𝜔𝐼 = 𝜔𝑀𝑅

1

√1 − 2𝜁𝑀𝑅
2

 for 𝜁 <
1

√2
.                              

 

(15) 

In this case, the magnitude factor of the pressure resonance is 

𝛺𝑝𝑟𝑒𝑧 =
1

2𝜁𝑀𝑅
√

1 + 𝜀2

1 − 2𝜁𝑀𝑅
2  .                              

 

(16) 

For μ=1, as derived from Eqn. (13), the phase resonance can be defined as 

𝜙0 = 𝑎𝑟𝑐𝑡𝑔
𝑎0 − 𝜀

1 + 𝑎0𝜀
,                              

 

(17) 

independent of the damping factor 𝜁𝑀𝑅, but influenced by the relative damping ε and the ao factor. 

Figures 3 to 5 illustrate the variation laws for the p1 magnitude factor, the magnitude factor at 

resonance, and the phase resonance, all corresponding to different values of the specific 

parameters: 𝜇 = 0 − 3 ;  𝜀 = 0 − 1,5; 𝜁𝑀𝑅 = 0 − 0.5; 𝑎0 = 𝑎𝑟𝑐𝑡𝑔(5𝜋/7). 
 

 

Fig. 3. The variation of 𝛺𝑝𝑟𝑒𝑧 −  𝜇            
 

       

Fig. 4. The variation of  𝛺𝑝𝑟𝑒𝑧 − 𝜁𝑀𝑅  

       

 Fig. 5. The variation of 𝜙0 − 𝜀. 

5. Conclusions 

Based on the analysis of the "pressure resonance phenomenon" in hydraulic driving systems with 
rotary motors, the following conclusions can be drawn: 
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a) The observed phenomenon highlights the functional instability of hydraulic driving systems 
with rotary motors, particularly in predominant dynamic operating states, such as 
movement-driving systems for technological equipment and working tools. This instability 
arises due to variations in the hydraulic pump flow of the system. The primary source of this 
instability cannot be effectively identified using conventional methods provided by 
automated system analysis theory, which are commonly applied for stability evaluations of 
such driving systems. 

b) The analysis reveals that the system's pressure gain factor can exceed twice the value of 
the static pressure for typical damping factor values (𝜁𝑀𝑅: 0.1 to 0.3), which are common in 
standard hydraulic driving system components (see Figure 3). In a system operating with 
stable pressure values of 250–300 bar, the resonance phenomenon can briefly generate 
peak pressure values ranging from 750 to 1500 bar. These extreme pressure levels pose 
significant risks, leading to overloading of hydraulic components, reduced lifespan and 
durability, and ultimately, premature failure of the hydraulic system components. 

c) Another effect of the analyzed phenomenon is the increased acoustic level of the pump. 
During very short time intervals (0.01–0.02 seconds), the pump operates under pronounced 
overloads, approximately 3 to 4 times the nominal load. During these periods, the system's 
overload protection elements are activated, further contributing to the rise in noise levels. 

d) The resonance gain factor (𝛺𝑝𝑟𝑒𝑧), shown in Figure 4, representing the maximum pressure 

magnitude of the system, can easily reach values 20 to 50 times greater than the static 
pressure for damping factors below 0.1. These values show slight variation with the relative 
damping (𝜀) of the hydro-mechanical system. This highlights the resonance phenomenon, 
bringing it into the typical operating range of a hydraulic driving system. 

e) The phase resonance illustrated in Figure 5 are minimal impact on the operating state of 
the system. 

The study concludes by highlighting the instability phenomenon in hydraulic driving systems 
caused by flow variations within system components. Effective methods to reduce or eliminate this 
harmful phenomenon will be proposed in future studies conducted by the author. 
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