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Abstract: Cavitation remains a critical issue in centrifugal pump operation, leading to performance 
degradation, structural damage, and increased maintenance costs. Effective cavitation detection and 
modeling are essential for improving pump reliability and efficiency. This review integrates two key aspects of 
cavitation research: signal-based fault detection methods and mathematical modeling approaches. First, we 
review various cavitation detection techniques based on vibration, acoustic emission, noise, and pressure 
pulsation signals. Each method's advantages and limitations are discussed, focusing on their effectiveness in 
early-stage detection, robustness, and implementation feasibility. Next, we compare different mathematical 
models used to simulate cavitating flows, highlighting their assumptions, strengths, and limitations in 
accurately predicting cavitation behavior. By bridging experimental detection techniques with computational 
modeling, this review provides a perspective on cavitation analysis, offering insights into future research 
directions that combine advanced sensing, intelligent algorithms, and improved multiphase flow simulations. 
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1. Introduction 

Hydraulic systems are indispensable in various industries, enabling the efficient and controlled 
transmission of power through fluid movement, which provides precise control over machinery and 
equipment. This allows for the execution of critical tasks such as lifting, pressing, and driving 
complex systems with high efficiency and reliability [1-3]. The design and study of hydraulic 
systems [4, 5], along with mathematical modeling and simulation of their operation [6], further 
enhance the understanding and optimization of these systems, allowing for accurate prediction of 
performance, energy consumption, and system behavior under varying operational conditions [7]. 
Pumps, as integral components of hydraulic systems, play a fundamental role in various industrial, 
agricultural, and domestic applications by ensuring efficient fluid circulation, pressure regulation, 
and energy conversion [8-10]. Despite their widespread utilization, pump systems are inherently 
susceptible to various operational inefficiencies and mechanical failures [8]. Recent developments 
in intelligent diagnostic methods for hydraulic piston pumps have provided valuable insights into 
detecting and mitigating such faults, enhancing pump systems' overall reliability [11, 12]. 
Centrifugal pumps are extensively used in industries including manufacturing, agriculture, oil and 
chemicals, and aerospace. Pump systems are inherently vulnerable to various problems, with 
cavitation being one of the most damaging [13, 14]. Cavitation, a complex multiphase flow 
phenomenon, arises when local static pressure drops below the vapor pressure of the working 
fluid, leading to the formation of vapor bubbles. As these bubbles travel into regions of higher 
pressure, they undergo rapid implosion, generating high-intensity pressure waves that result in 
severe material erosion, flow disturbances, noise, and excessive vibration. Over time, the 
persistence of cavitation leads to significant degradation in pump performance, reduced energy 
efficiency, and increased maintenance costs, making it a critical subject of investigation in 
hydraulic machinery [15]. The transient and highly nonlinear nature of cavitation poses significant 
challenges in both its detection and predictive modeling. The collapse of vapor cavities introduces 
unsteady flow characteristics that complicate conventional diagnostic approaches. Additionally, the 
unpredictability of cavitation initiation and development due to factors such as flow velocity, system 
pressure, temperature variations, and pump geometry further complicates its analysis. Traditional 
detection methods rely on physical inspection and performance monitoring; however, these 
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techniques often fail to provide early warnings or quantify the severity of cavitation in real time. In 
response to these limitations, modern signal processing techniques have emerged as powerful 
tools for cavitation diagnosis. By leveraging acoustic emission, vibration analysis, noise monitoring, 
and pressure pulsation measurements, researchers have developed advanced methodologies to 
characterize cavitation-induced fluctuations and identify early warning indicators [15, 16]. The 
integration of artificial intelligence (AI), machine learning (ML), and deep learning (DL) algorithms 
further enhances the capability of these techniques by enabling automated feature extraction, 
pattern recognition, and state classification with improved accuracy and robustness [17-21]. 
In parallel, mathematical modeling has played a crucial role in understanding the fundamental 
mechanisms governing cavitating flows [22]. Theoretical frameworks based on fluid dynamics, 
such as the Bernoulli equation and Navier-Stokes formulations, provide a foundation for simulating 
cavitation dynamics under varying operational conditions. Computational Fluid Dynamics (CFD) 
models have been extensively developed to predict cavitation inception, bubble dynamics, and flow 
field variations [23-25]. These models incorporate multiphase flow representations, including 
homogeneous and heterogeneous cavitation models, to capture the phase transition phenomena 
with greater fidelity. Despite significant advancements, challenges remain in achieving 
computational efficiency, model validation, and adaptability to real-world pump systems. 
This review explores cavitation detection methods utilizing signal processing techniques, providing 
a comparative analysis of existing mathematical models for cavitation simulation. The discussion 
encompasses the principles, methodologies, and recent developments in vibration-based, 
acoustic, noise, and pressure pulsation detection approaches. Furthermore, a critical evaluation of 
different cavitation models is provided, highlighting their applicability, accuracy, and computational 
constraints. By integrating experimental and theoretical perspectives, this review aims to bridge the 
gap between empirical diagnostics and predictive modeling, offering insights into future research 
directions in cavitation analysis of centrifugal pumps. 

2. Research methodology 

A comprehensive survey was conducted to evaluate the increasing research focus on signal 
processing techniques and mathematical modeling for centrifugal pump cavitation analysis and 
diagnosis. Recognizing the practical significance of this domain, the investigation covers studies 
published between 2011 and 2024. This review examines a range of journal articles exploring key 
concepts and their applications in cavitation detection and modelling for centrifugal pumps. 

2.1 The common mathematical formulations for cavitation modelling 

Cavitation modeling plays a crucial role in understanding and predicting the behavior of multiphase 
flows, particularly in hydraulic systems and turbomachinery. Cavitation can lead to three distinct 
and unfavorable consequences: (1) a reduction in head-capacity and efficiency performance, (2) 
impeller deterioration due to pitting and erosion, and (3) structural vibrations accompanied by 
increased noise levels. Due to the complex nature of cavitation, various mathematical models have 
been developed to simulate its dynamics with varying levels of fidelity. 
 
1) Multiphase flow modeling 
Multiphase flow modeling describes the behavior of two or more coexisting phases within a fluid 
system. The classification of multiphase flows includes: 
• Gas–liquid and liquid–liquid flows, which encompass cavitation phenomena where vapor bubbles 
form and collapse within a liquid medium. 
• Gas–solid flows, involving dispersed solid particles in a gaseous carrier fluid. 
• Liquid–solid flows, where solid particles interact with a surrounding liquid phase. 
Cavitation is a subset of gas–liquid multiphase flows, specifically categorized as bubbly flow, in 
which discrete gaseous bubbles are suspended in a continuous liquid phase. The accurate 
modeling of cavitation requires capturing phase interactions, bubble dynamics, and mass transfer 
mechanisms. Cavitation models are typically categorized into two-fluid and one-fluid models, each 
with its own advantages and limitations [22]. Additionally, cavitation modeling approaches can be 
broadly classified into two primary categories: direct models and averaged models [26]. 
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2) Two–fluid models 
Two-fluid models are employed to separately resolve the conservation equations governing both 
the discrete and continuous phases in cavitating flows. These models provide a detailed 
representation of phase interactions, enabling a more accurate prediction of cavitation dynamics. 
The solution of these conservation equations can be achieved using one of the following 
approaches: 
• Euler approach: This method involves solving the conservation equations for each phase by 
considering the flow properties at a fixed spatial location while monitoring the transport of individual 
phases. This approach is particularly useful when treating both phases as interpenetrating 
continua, where phase interaction terms, such as momentum and mass exchange, must be 
carefully modeled. 
• Lagrange approach: In this method, the conservation equations for the continuous phase are 
solved using the Eulerian framework, whereas the discrete phase (e.g., cavitation bubbles) is 
tracked along individual trajectories using a Lagrangian formulation. This allows for a more detailed 
representation of bubble dynamics, including coalescence, breakup, and transport, but requires 
substantial computational resources due to the necessity of tracking numerous discrete elements. 
While these methods offer high accuracy in modeling cavitating flows, they become 
computationally expensive when the vapor volume fraction exceeds a critical threshold. In practical 
simulations, alternative modeling approaches may be preferred to reduce computational costs 
while maintaining acceptable accuracy. 
 
3) One–fluid models 
One-fluid models provide a simplified yet effective approach to modeling cavitating flows by 
assuming that the conservation equations govern a homogeneous mixture of liquid and vapor 
phases. Unlike two-fluid models, where the individual phases are treated separately, the one-fluid 
framework integrates the two phases into a single continuum with averaged properties. Given that 
cavitating flows are typically assumed to be isothermal, only the mass and momentum 
conservation equations are considered, while energy conservation equations are often omitted. 
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where: ρ, ρv, ρl represent the densities of the mixture, vapor phase, and liquid phase, respectively 
[kg·m−3]; (ρu), (ρu)v, (ρu)l denote the momentum of the mixture, vapor phase, and liquid phase, 
respectively [kg·m−2·s−1]; u is the velocity of the mixture [m·s−1]; α is the vapor volume fraction, a 
dimensionless parameter ranging from 0 (pure liquid) to 1 (pure vapor). 
Several variations of one-fluid models exist, each differing in their assumptions regarding phase 
interactions and the additional equations required to close the system: 
• Zero-equation models 
Zero-equation models take an even more simplified approach by solving only the mixture 
conservation equations without introducing any additional transport equations. Instead of explicitly 
modeling phase interactions, these models rely on a barotropic state law, which defines the 
relationship between density and pressure. The density of the mixture is directly computed as a 
function of pressure, eliminating the need for additional conservation equations. 
• One-equation models 
One-equation models assume that there is no slip between the phases, meaning that both the 
liquid and vapor phases move with the same velocity. Instead of solving separate conservation 
equations for the individual phases, these models introduce a single additional equation governing 
the conservation of vapor mass, expressed as: 
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where: Re and Rc represent the source terms corresponding to vapor generation (evaporation) and 
condensation, respectively [kg·m−3·s−1]. The primary distinction among different one-equation 
models lies in the formulation of these source terms, which govern the rate of phase transition 
between liquid and vapor. 
Several one-equation models have been developed to describe cavitation phenomena, primarily 
based on transport equations for vapor volume fraction. These models incorporate phase change 
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dynamics using source terms derived from bubble dynamics equations, such as the Rayleigh-
Plesset equation. 
- Kunz model. The Kunz model is a one-equation cavitation model where the vapor volume fraction 
is governed by a transport equation. The source terms, Re and Rc, represent the mass transfer 
between liquid and vapor and are determined empirically. This model is widely used due to its 
simplicity and computational efficiency. However, its reliance on empirical coefficients makes it less 
adaptable to complex cavitation phenomena. 
- Singhal model. The Singhal model incorporates the Rayleigh–Plesset equation, providing a more 
physics-based approach to cavitation modeling. It includes corrections for turbulent pressure 
fluctuations, making it suitable for a wide range of flow conditions. However, the model requires 
additional parameters such as the turbulent kinetic energy (k), which can increase computational 
cost. 
- Zwart–Gerber–Belamri (ZGB) model. The ZGB model also relies on the Rayleigh–Plesset 
equation but introduces nucleation site volume fraction (αnuc) to model cavitation inception. This 
model is particularly useful for industrial applications due to its balance between accuracy and 
computational efficiency. However, it requires careful calibration of the nucleation site volume 
fraction and bubble radius. 
- Schnerr and Sauer model. The Schnerr and Sauer model uses a bubble dynamics-based 
approach, where the number of bubbles per unit volume is a key parameter. This model is highly 
effective in simulating cavitation in high-speed flows and turbine applications. However, it can be 
computationally expensive due to its detailed bubble tracking mechanism. 
A comparative analysis of one-equation cavitation models are shown in Tables 1 and 2. 
 
                                                                Table 1: A comparative analysis of one-equation cavitation models 

Model Governing equation Advantages Limitations 

Kunz Model 
One-equation 
transport model 

- Computationally efficient 
- Simple implementation 

- Empirical nature limits 
accuracy in complex flows 
- Less physics-based 

Singhal 
Model 

Rayleigh–Plesset 
equation with 
turbulence correction 

- More physics-based than Kunz 
- Accounts for turbulent 
fluctuations 

- Requires additional 
turbulence parameters 
- Higher computational cost 

ZGB Model 

Rayleigh–Plesset 
equation with 
nucleation site 
correction 

- Balances accuracy and 
computational efficiency 
- Suitable for industrial 
applications 

- Requires calibration of 
nucleation site parameters 

Schnerr and 
Sauer Model 

Bubble dynamics-
based approach 

- Detailed cavitation 
representation 
- Suitable for high-speed flows 

- Computationally intensive 
due to bubble tracking 

 
Table 2: Comparison of one-equation cavitation models in terms of computational efficiency, stability, 
accuracy, and applications 

Model 
Computational 

efficiency 
Numerical 
stability 

Accuracy in 
predicting 
cavitation 

Applications 

Kunz Model High (fastest) High Moderate 
Fast simulations with 
moderate accuracy 

Singhal Model Moderate Moderate High Turbulent cavitating flows 

ZGB Model Moderate to High Moderate to High High Industrial applications 

Schnerr and 
Sauer Model 

Low (most 
expensive) 

Moderate to Low Very High 
High-speed, detailed 
cavitation studies 

 

• Two-equation models 
Two-equation models account for slip between the liquid and vapor phases, meaning that each 
phase can move at different velocities. In addition to the conservation equations of the mixture, two 
additional equations are introduced to govern the conservation of either the liquid or vapor phase. 
These models allow for a more accurate representation of phase interactions, but at the cost of 
increased computational complexity. 
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Advantages and limitations of one-fluid models 
One-fluid models offer computational efficiency and simplicity compared to two-fluid models, 
making them attractive for simulating cavitating flows in engineering applications such as 
hydrofoils, pumps, and nozzles. However, their reliance on averaged properties and simplified 
phase interaction assumptions may lead to inaccuracies in highly dynamic cavitating flows where 
phase separation, slip velocity, and bubble dynamics play a significant role. The choice between 
different one-fluid modeling approaches depends on the required accuracy and computational 
resources available for the simulation. 

2.2 Principles and approaches in cavitation detection 

Several methods are employed to detect cavitation of pumps based on different physical principles 
such as vibration, acoustic emission, noise, and pressure pulsation (Table 3). These methods are 
distinguished by their ability to monitor different parameters, which help identify cavitation onset, 
progression, and severity. Each method has its own strengths and weaknesses depending on the 
specific pump system, operating conditions, and desired level of sensitivity. Combining multiple 
techniques can enhance the reliability and accuracy of cavitation detection [15]. 
 
                                                                            Table 3: Overview of common detection cavitation methods 

Method 
Parameters 
monitored 

Detection 
principle 

Advantages Limitations 

Vibration 
method 

Vibration 
acceleration, 
frequency, RMS, 
variance 

Vibration signals 
detected by 
accelerometers 

- High sensitivity 
- Suitable for real-
time detection 

- Requires placement of 
sensors 
- May not detect early 
cavitation 

Acoustic 
emission 

Signal energy, 
amplitude, rise 
time, duration 

Microjet or 
shockwave induced 
acoustic signals 

- Sensitive to high-
frequency cavitation 
signals 
- Non-invasive 

- Requires high-quality 
sensors 
- Signal attenuation in air 

Noise 
method 

Noise intensity, 
frequency 
spectrum 

Noise generated by 
cavitation bubble 
formation and 
collapse 

- Useful for early 
detection 
- Simple and cost-
effective 

- Difficult to distinguish 
from other types of noise 
- Limited to detectable 
noise frequency range 

Pressure 
pulsation 

Pressure 
fluctuations, 
frequency 
spectrum 

Pressure pulsations 
caused by 
cavitation-induced 
flow field 
disturbances 

- Effective in varying 
pump flow conditions 
- High signal-to-noise 
ratio 

- Complex data 
interpretation 
- Requires high precision 
sensors 

 
a) Vibration signal processing methods 
Vibration signal processing techniques employed for cavitation detection and analysis primarily fall 
into three broad categories: time-domain analysis, frequency-domain analysis, and time–frequency 
domain analysis. These methodologies play a crucial role in extracting meaningful information from 
vibration signals, enabling the identification and characterization of cavitation phenomena in 
pumping systems. Time-domain analysis focuses on the direct examination of vibration signals 
over time, capturing transient characteristics and statistical parameters such as root mean square 
(RMS), peak values, crest factor, and kurtosis. These features provide essential insights into the 
severity and evolution of cavitation-induced vibrations. Frequency-domain analysis involves 
transforming time-domain signals into their spectral representations using techniques such as the 
Fast Fourier Transform (FFT) and Power Spectral Density (PSD). This approach facilitates the 
identification of dominant frequency components associated with cavitation, distinguishing them 
from other mechanical or hydraulic disturbances. Time–frequency domain analysis integrates both 
time and frequency characteristics, allowing for the assessment of non-stationary signals. Methods 
such as Wavelet Transform (WT), Short-Time Fourier Transform (STFT), and Hilbert-Huang 
Transform (HHT) enable the precise localization of cavitation-induced transient events across 
different frequency bands. These techniques are particularly advantageous in detecting early-stage 
cavitation, where signal characteristics dynamically evolve over time. 



ISSN 1453 – 7303                                                                   “HIDRAULICA” (No. 1/2025) 
Magazine of Hydraulics, Pneumatics, Tribology, Ecology, Sensorics, Mechatronics 

 

  
18 

 
  

A comprehensive summary of the latest advancements and applications of these vibration signal 
processing methodologies in cavitation diagnosis is shown in Table 4. 
 
                                                     Table 4: Comprehensive overview of vibration signal processing methods 

Analytical 
method 

Techniques used Advantages Limitations 

Time-domain 
analysis 
(Refs. [27], [28]) 

Correlation analysis, amplitude 
range analysis, statistical 
feature extraction (RMS, peak 
values, kurtosis, crest factor) 

Simple and intuitive; 
directly reflects 
cavitation-induced 
variations; effective for 
periodic signals 

Limited to stationary 
signals; lacks 
frequency-related 
insights; susceptible to 
noise 

Frequency-
domain analysis 
(Ref. [28]) 

Fourier Transform (FT), Power 
Spectral Density (PSD), 
envelope analysis, difference 
frequency analysis, cepstral 
analysis 

Provides insight into 
dominant frequency 
components related to 
cavitation; useful for 
steady-state conditions 

Inability to capture 
transient, time-varying 
characteristics; requires 
pre-filtering for 
accuracy 

Time–frequency 
domain analysis 
(Ref. [29], [30]) 

Short-Time Fourier Transform 
(STFT), Wavelet Transform 
(WT), Empirical Mode 
Decomposition (EMD), Wigner–
Ville Distribution (WVD), 
Hilbert-Huang Transform (HHT) 

Suitable for non-
stationary signals; 
enables localized 
analysis of transient 
events; effective for 
cavitation detection and 
diagnosis 

Computationally 
intensive; choice of 
transformation 
parameters affects 
accuracy 

 
Figure 1 illustrates the relationship between cavitation states and their corresponding vibration 
characteristics in centrifugal pumps. 

 
Fig. 1. Normalization value: (a) The net positive suction head (NPSH), (b) Maximum, (c) Minimum, (d) Mean, 
(e) Peak, (f) Absolute mean, (g) Variance, (h) Standard deviation, (i) Kurtosis, (j) Skewness, (k) Root mean 
square, (l) Shape factor, (m) Crest factor, (n) Kurtosis factor, (o) Impulse factor, (p) Margin factor. (Reprinted 
from ref. [27] with permission of MDPI AG publisher). 



ISSN 1453 – 7303                                                                   “HIDRAULICA” (No. 1/2025) 
Magazine of Hydraulics, Pneumatics, Tribology, Ecology, Sensorics, Mechatronics 

 

  
19 

 
  

Figure 2 illustrates the cavitation-induced vibration signal at 40 Hz for a centrifugal pump, shown in 
time and frequency domains, with random high-frequency components indicating cavitation [28]. 

 
Fig. 2. Cavitation-induced vibration signal at a rotational speed of 40 Hz for a centrifugal pump. (a) Time-
domain representation. (b) Frequency-domain representation, where random high-frequency components 
indicate cavitation. (Reprinted from ref. [28] with permission of Springer Nature Switzerland AG publisher). 
 
Figure 3 illustrates the time-domain representation of signal x(t) and the corresponding results of 
three computational methods (time–frequency algorithms) for a centrifugal pump: (a) time-domain 
diagram of x(t), (b) time–frequency algorithm (Wigner–Ville distribution method), (c) time–
frequency algorithm (short time Fourier transform method), and (d) time–frequency algorithm 
(United algorithm of STFT–WVD method) [29]. 

 
Fig. 3. Cavitation-induced vibration signal for a centrifugal pump. Time-domain representation of signal x(t) 
and corresponding results of three time–frequency algorithms. (a) Time-domain representation of x(t). (b) 
Wigner–Ville distribution (WVD) method. (c) Short-Time Fourier Transform (STFT) method. (d) Combined 
STFT–WVD method. (Reprinted from ref. [29] with permission of Springer Nature Switzerland AG publisher). 
 
Table 5 provides a comparative analysis of various frequency-domain techniques used for 
cavitation diagnosis, highlighting the advantages such as the ability to identify dominant frequency 
components and the limitations like difficulty in capturing transient characteristics. Similarly, Table 
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6 shows a review of time-frequency domain techniques, emphasizing the strengths of adaptability 
to non-stationary signals and the challenges, such as the trade-offs in time-frequency resolution or 
issues like mode mixing in some methods. 
 

Table 5: Comparative analysis of frequency-domain techniques for cavitation diagnosis 

Method Key Principle Advantages Limitations 
Common 

Applications 

Fourier 
Transform 
(FT) 

Decomposes the 
signal into its 
frequency 
components 

Simple and well-
established; identifies 
dominant frequencies 

Inability to capture 
transient, time-
varying 
characteristics 

Identifying steady-
state cavitation 
frequencies 

Power 
Spectral 
Density 
(PSD) 

Measures the 
power distribution 
of the signal across 
frequencies 

Provides a clear 
representation of 
frequency 
components 

Requires steady-
state conditions; 
cannot handle 
transient events 

Monitoring 
dominant 
frequencies in 
cavitating pumps 

Envelope 
Analysis 

Analyzes the 
modulation of the 
signal amplitude 

Effective for detecting 
low-frequency 
cavitation signatures 

Can miss high-
frequency cavitation 
details 

Detecting 
cavitation-induced 
vibration signatures 

Difference 
Frequency 
Analysis 

Analyzes the 
difference between 
peak frequencies in 
the signal 

Highlights cavitation-
induced low-
frequency variations 

Sensitivity to signal 
noise can reduce 
accuracy 

Detecting cavitation 
by evaluating 
frequency shifts 

Cepstral 
Analysis 

Uses the inverse 
Fourier transform of 
the log-spectral 
representation 

Helps separate 
periodic components 
from a signal’s noise 

Less effective for 
non-stationary 
signals 

Identifying 
cavitation by 
examining 
harmonic 
components 

 
Table 6: Comparative analysis of time–frequency domain techniques for cavitation diagnosis 

 
The frequency distribution of cavitation-induced vibrations spans a broad spectrum, predominantly 
concentrated in high-frequency bands, with distinct sensitivity characteristics observed across 
these frequency ranges [15]. Cavitation, being a dynamic and nonlinear phenomenon, interacts 
differently with various frequency bands, leading to variations in vibration patterns. The high-

Method Key principle Advantages Limitations 
Common 
applications 

Short-Time 
Fourier 
Transform 
(STFT) 

Segments the signal 
and applies FT to 
each segment 

Provides a time-
localized frequency 
representation 

Fixed time-
frequency 
resolution trade-off 

Detecting cavitation 
onset and transient 
events 

Wavelet 
Transform 
(WT) 

Uses scalable 
wavelets to analyze 
signals at multiple 
resolutions 

Adaptive resolution; 
effective for both 
transient and 
periodic signals 

Requires 
appropriate wavelet 
selection for 
optimal 
performance 

Identification of 
cavitation-induced 
broadband noise 

Empirical 
Mode 
Decomposition 
(EMD) 

Decomposes signals 
into intrinsic mode 
functions (IMFs) 
using adaptive 
filtering 

Suitable for non-
linear and non-
stationary signal 
analysis 

Mode mixing issues 
can affect 
interpretation 

Feature extraction 
in cavitation pattern 
recognition 

Hilbert-Huang 
Transform 
(HHT) 

Combines EMD with 
Hilbert spectral 
analysis 

High adaptability 
for analyzing 
complex, non-
stationary signals 

Computationally 
expensive; requires 
robust mode 
decomposition 

Time-localized 
cavitation feature 
analysis 

Wigner–Ville 
Distribution 
(WVD) 

Provides high-
resolution time-
frequency 
representation 

Superior energy 
concentration; 
precise localization 
of transients 

Prone to cross-term 
interference 

High-resolution 
cavitation impact 
signal analysis 
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frequency vibrations are often associated with the rapid formation and collapse of cavitation 
bubbles, which generates sharp, high-energy pulses. These pulses typically manifest as significant 
peaks in the vibration signal at frequencies ranging from several kilohertz to tens of kilohertz. 
However, the interaction between cavitation and low-frequency components, especially below 1 
kHz, has also been of significant interest in the literature, as these frequencies are often linked to 
broader system responses, such as mechanical resonances and pump rotor behavior. Studies 
have shown varying responses of cavitation to different frequency ranges, with some researchers 
emphasizing high-frequency bands for fault detection, while others point to the importance of low-
frequency signals in capturing early-stage cavitation and identifying subtle pump instabilities [31-
36]. These findings highlight the complexity of cavitation vibration characteristics and the need for 
comprehensive frequency-domain analysis to fully understand its impact on pump performance. 
In recent years, machine learning has emerged as a pivotal tool within artificial intelligence for 
extracting meaningful insights from vast and intricate datasets. Fault classification algorithms, such 
as Support Vector Machines (SVM), Extreme Learning Machines (ELM), and their enhanced 
variants, are among the prominent methodologies employed in this domain. The integration of 
machine learning with vibration analysis has further enhanced its efficacy, becoming a powerful 
approach for detecting pump cavitation faults [37-39]. Artificial neural networks (ANNs), have 
significantly advanced in fault detection applications. Techniques such as nonlinear autoregressive 
models, support vector machines, and random forests are commonly employed for cavitation 
detection. Among these, the extreme learning machine (ELM) has demonstrated superior accuracy 
compared to other methods like BP neural networks and random forests. While machine learning 
approaches have evolved, challenges remain, including the inability of shallow neural networks to 
handle complex nonlinear relationships without expert input. The advent of deep learning models, 
particularly deep neural networks like SAE, LSTM, and CNN, has enhanced the ability to process 
large datasets with high precision. CNN, in particular, has outperformed other methods in 
cavitation diagnosis, showing higher accuracy in analyzing vibration signals. Despite the success 
of deep learning, challenges such as resource limitations and the need for multi-channel sensor 
inputs remain. Traditional methods, however, continue to hold value in specific scenarios, and the 
choice of method should be tailored to the working conditions [40-43]. 
In cavitation detection, recent advancements have focused on improving both accuracy and speed, 
with various innovative methods demonstrating significant progress. Techniques such as hybrid 
feature selection combined with empirical modal decomposition and generalized regression neural 
networks (GRNN) have achieved near-perfect detection accuracy, while also enhancing speed 
[44]. Additionally, noise reduction methods, like time-frequency image denoising and convolutional 
neural networks (CNN), have proven effective in improving detection accuracy in noisy 
environments. Other strategies, including artificial immune algorithms, bispectral analysis with 
transfer learning, and the constant false alarm rate (CFAR) criterion, have demonstrated superior 
accuracy compared to traditional methods, particularly in the early stages of cavitation detection 
[45-47]. The location of vibration measurement points significantly influences the accuracy of 
cavitation detection, with certain areas, such as near the volute tongue, proving most effective for 
capturing reliable signals [30]. Research shows that sensors positioned closer to the cavitation 
zone yield higher detection accuracy, while optimizing sensor placement can reduce costs and 
improve inspection efficiency [15]. 
 
b) Acoustic emission signals processing methods 
Acoustic emission (AE) refers to releasing elastic waves when particles within a material 
experience relative motion, thereby discharging strain energy in the form of these waves. This 
phenomenon provides a means of evaluating materials' internal condition or structural integrity. 
The application of AE technology in detecting equipment faults is closely linked to the discovery of 
the Kaiser effect, which demonstrated that materials have the ability to 'remember' previous stress 
events. In pumps, the primary sources of AE signals are associated with the following conditions 
[48-50]: 
- Low-pressure zones: These are typically located behind the pump blade inlet, an area particularly 
prone to cavitation due to significant pressure drops. 
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- Pressure instability: Unstable conditions within the pump lead to irregular pressure fluctuations, 
which contribute to AE emissions. 
- Shear stress: Large shear forces generated within the fluid flow also induce AE signals, 
particularly in turbulent regions. 
When cavitation occurs, microjets and shock waves are generated by the collapse of vapor 
bubbles, interacting with the pump's components, such as the impeller and pipe walls. These 
interactions create AE signals that predominantly fall within the medium to high-frequency range, 
spanning from 1 kHz to 1 MHz. These signals propagate through the pump system, enabling 
sensitive detection of cavitation-related phenomena. AE signals are particularly effective for 
detecting impulsive pressure variations within the pump, which are indicative of cavitation, 
especially in large-scale systems. Acoustic emission sensors are strategically placed in high-risk 
areas, such as near the impeller, inlet, and outlet of the pump, to capture the AE signals generated 
during cavitation events. However, since AE signals attenuate rapidly in air, the use of couplants is 
essential for ensuring effective signal transmission. Several characteristics of AE signals, such as 
amplitude, energy, rise time, duration, and event counts, can be extracted and analyzed to assess 
the presence and severity of cavitation. These parameters are crucial for identifying cavitation 
faults and can significantly enhance diagnostic accuracy in pump monitoring systems. By 
leveraging AE technology, cavitation can be detected at an early stage, allowing for timely 
maintenance and preventing potential damage.  
 
c) Noise processing methods 
The acoustic emissions produced by a centrifugal pump are intrinsically influenced by its geometric 
configuration, including size and structural design, as well as the operational parameters such as 
rotational speed and load conditions. Additionally, hydrodynamic instabilities within the pump 
significantly contribute to elevated noise levels. These instabilities may arise due to phenomena 
such as flow separation (stall), system-wide oscillations (surge), and cavitation, each of which 
induces fluctuating pressure fields and turbulence, thereby amplifying acoustic disturbances [51]. 
It is known that cavitation-induced noise in centrifugal pumps is a type of hydrodynamic noise 
distinct from mechanical noise, characterized by a unique frequency differing from the blade 
passing frequency. This noise results from the formation and collapse of bubbles, with the collapse 
generating radiation noise that is transmitted through the pump body and detected by sound 
sensors, although the precise mathematical model of this process remains under experimental 
investigation [51-54]. Figure 9 illustrates the impact of cavitation on noise characteristics in a 
centrifugal pump, comparing noise spectra before and after cavitation inception and analyzing the 
relationship between noise levels, specific frequency components, and total delivery head under 
varying NPSH conditions. 

   
Fig. 4. (a) Noise spectra before cavitation inception (thick line) and after full development (thin line) for a 
centrifugal pump. (b) Comparison of total noise level (Lptot), noise level at 147 Hz (Lp147 Hz), and total delivery 
head (H) for different available NPSH values. (Reprinted from ref. [51] with permission of Springer Nature 
Switzerland AG publisher). 

 
Noise measurements are frequently integrated with other signal analyses, particularly vibration 
signals, to enhance the accuracy and reliability of cavitation detection. 



ISSN 1453 – 7303                                                                   “HIDRAULICA” (No. 1/2025) 
Magazine of Hydraulics, Pneumatics, Tribology, Ecology, Sensorics, Mechatronics 

 

  
23 

 
  

d) Pressure pulsation methods 
Research on cavitation-induced pressure pulsation in centrifugal pumps focuses on key locations 
such as the inlet, outlet, volute, and impeller [15]. Studies indicate that inlet pressure pulsations are 
more sensitive to cavitation, with frequency components shifting from low to high as cavitation 
progresses [55]. At the volute tongue, cavitation leads to broadband pulsation and reduced main 
frequency amplitude. Severe cavitation increases high-frequency components, while pressure 
pulsation amplitudes vary across different pump sections. For cavitation detection, pressure 
pulsation signals, being nonlinear and non-stationary, require advanced signal processing 
techniques. Methods like wavelet analysis, singular value decomposition, and deep learning 
improve fault diagnosis accuracy. While pressure-based detection is less comprehensive than 
vibration or acoustic methods, it is cost-effective, resistant to interference, and crucial for 
monitoring pump faults [56-60]. Figure 5 compares pressure pulsation amplitudes at  at fBPF under 
non-cavitation and critical NPSHc conditions (a) and shows angular distributions for different 
cavitation numbers at the nominal flow rate (b). 

  
Fig. 5. a) Comparison of amplitudes at fBPF for In1 under non-cavitation and critical point NPSHc conditions. 
b) Angular distributions of pressure amplitudes at fBPF for different cavitation numbers at nominal flow rate. 
(Reprinted from ref. [55] with permission of Royal Society publisher). 

3. Analysis, limitations, comparison of methods and future challenges 

Acoustic emission and noise methods excel in early cavitation detection, particularly in non-contact 
settings, but are hindered by noise reduction challenges and high sensor costs. Acoustic emission 
is effective in complex, harsh environments but remains underexplored in industrial applications. 
Vibration-based detection faces signal attenuation and lower accuracy for early cavitation 
detection, while pressure pulsation methods are more resistant to interference but less accurate 
and difficult to implement in practical settings due to sensor installation complexity. 
Signal-based cavitation detection methods are evolving to address challenges such as noise 
interference and complex signals. Key trends include: 
- Advancement in signal acquisition: while pump systems complicate signal acquisition, 
advancements in sensing and signal processing are improving cavitation fault detection. 
- Optimization of existing methods: many current methods can be refined, with ongoing research 
focusing on enhancing algorithms and detection accuracy. 
- Integration of AI: AI and machine learning, particularly reinforcement learning, are enhancing the 
efficiency and precision of cavitation detection. 
- Cross-field innovations: techniques from other fault detection fields are being adapted to improve 
cavitation detection through innovative signal processing and computational models. 
- Versatility in detection systems: cavitation detection systems need to be more versatile, as 
current methods are often pump-specific. Future research should aim for generalized solutions 
applicable to various pump types. 
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4. Conclusions 

This review examines various fault detection methods based on different signals, providing 
valuable insights into centrifugal pump cavitation detection. It highlights advancements in vibration, 
noise, acoustic emission, and pressure pulsation methods, emphasizing their contributions to 
improving detection accuracy and reliability. Despite progress, challenges such as sensor costs, 
noise reduction, and feature extraction remain, requiring further research to fully realize the 
potential of these methods. Additionally, the integration of advanced technologies, such as artificial 
intelligence, could significantly enhance the effectiveness of these detection systems. With 
continued development, signal-based cavitation detection methods will find substantial applications 
in fault detection systems, ultimately contributing to the optimization of pump performance and the 
prevention of costly mechanical failures. 
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