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Abstract: This study presents an integrated methodology for assessing water resource vulnerability in 
Chihuahua City, Mexico, by combining satellite-based hydrological data and advanced time-series modeling. 
Using Long Short-Term Memory (LSTM) neural networks, the research forecasts monthly precipitation trends 
and identifies critical drought periods, notably between 2029 and 2032. Concurrently, GRACE satellite data 
reveal persistent groundwater depletion in the El Sauz–Encinillas aquifer, corroborated by historical 
piezometric measurements. The Río Conchos 3 basin exhibits surface water deficits, with future availability 
projections varying significantly across hydrological models. The approach enables early detection of water 
stress, supports operational optimization, and informs adaptive governance strategies. These findings 
underscore the importance of integrating predictive analytics with physical observations to enhance 
resilience in semi-arid urban regions.  
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1. Introduction 

Water scarcity is a growing concern in semi-arid regions around the world, where factors such as 
climate variability, population growth, and agricultural demands place increasing pressure on 
limited water resources. In northern Mexico, the state of Chihuahua faces significant challenges, 
including declining precipitation, aquifer overexploitation, and infrastructure that could be 
strengthened for greater resilience. The aquifers overexploitation is a well-documented issue in 
many parts of Mexico, leading to a long-term decline in groundwater levels [1]. 
Recent advances in artificial intelligence (Ai) and remote sensing offer innovative tools for 
addressing these challenges. Machine learning models—particularly those designed for sequential 
data, such as Long Short-Term Memory (LSTM) neural networks—enable more accurate 
forecasting of climatic variables, including precipitation. Research by Hamed  and, Rao, 1998, Ni et 
al., 2020 [2,3] have demonstrated the effectiveness of LSTM models for hydrological forecasting. 
Simultaneously, satellite missions like NASA’s Gravity Recovery and Climate Experiment (GRACE) 
provide valuable insights into terrestrial water storage dynamics, revealing trends in groundwater 
depletion that are often not visible through surface monitoring alone [4,5]. 
This paper presents an integrated approach to water resource assessment in Chihuahua City, 
Mexico. It combines AI-based precipitation forecasting with satellite-derived groundwater anomaly 
detection. By applying LSTM models to historical rainfall data and correlating the results with 
GRACE observations and well measurements, this research seeks to improve drought prevention, 
quantify aquifer stress, and propose adaptive management strategies. The findings demonstrate 
the value of merging predictive analytics with physical hydrological data to support sustainable 
water governance in climate-sensitive regions. 
Chihuahua City faces challenges related to water management due to limited precipitation, aquifer 
overexploitation, and the need for more resilient hydraulic infrastructure. These issues are further 
complicated by the lack of timely and integrated data systems to support proactive water 
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management. An effective strategy could involve segmenting hydrometric districts based on water 
availability versus user demand. This would allow for better control and integration of service 
provision, helping to ensure the quality, quantity, and pressure of water delivery. Strengthening the 
system's resilience, a concept explored by Lukat et al., 2022 [6], can help mitigate the impacts of 
stress caused by growing populations and climate variability in semi-arid regions like Chihuahua. 
Chihuahua City is located within the Río Conchos 3 basin, which is composed of three sub-basins: 
the Sacramento, El Granero, and Chuviscar. The Río Conchos is a critical river in Chihuahua, 
draining almost half of the state's territory and serving as the primary Mexican tributary to the Río 
Bravo (Rio Grande). The strategic importance of this basin for both Mexico and the United States 
has been a subject of diplomatic and scientific discourse for decades, highlighting the need for 
careful binational water management [7]. 
 

 

Fig. 1. Rio Conchos 3 River basin at Chihuahua City and their subbasins. Source: Own design 

Although this region possesses notable surface water sources, their reliability has been 
significantly compromised by prolonged drought conditions. Consequently, Chihuahua city relies 
predominantly on local groundwater aquifers to meet its direct water supply needs (Figure 2). The 
primary aquifers serving the city include: 

• Chihuahua-Sacramento Aquifer (CHS): This aquifer underlies most of Chihuahua City's 
urban area and is part of the larger Bravo-Conchos hydrological basin. It covers an area of 
1,889 km². 

• El Sauz–Encinillas Aquifer: Located approximately 92 km north of Chihuahua City, this 
aquifer is crucial for the city's water supply. It resides within a closed (endorheic) basin 
surrounded by mountain ranges. 

Chihuahua City is located at a semi-arid region where groundwater is the primary permanent water 
source. However, the available data from Conagua indicates significant challenges: 
Overexploitation: Many aquifers in Chihuahua, including El Sauz-Encinillas, are overexploited, 
meaning water extraction significantly exceeds natural recharge rates. Out of 61 aquifers supplying 
drinking water in the state, 42 are overexploited, and 9 have no reported availability. 
Declining Water Levels: This overexploitation leads to a consistent drop in water table levels, a 
trend observed through satellite data (GRACE) and validated by historical well measurements. 
Increasing Demand: Despite the deficit, water demand from Chihuahua City's growing population 
and the agricultural sector continues to rise, exacerbating the water scarcity issues. 
Slow Recharge: Deep aquifers, which often contain "fossil" water, recharge very slowly, and 
prolonged extraction can lead to increased salinity, making the water unsuitable for various uses. 



ISSN 1453 – 7303                                                                   “HIDRAULICA” (No. 3/2025) 
Magazine of Hydraulics, Pneumatics, Tribology, Ecology, Sensorics, Mechatronics 

 

  
55 

 
  

 

Fig. 2. Aquifers surrounding Chihuahua City and their AAD annual average availability. Source: [8] 

Figure 2 shows a geospatial groundwater configuration availability in the Chihuahua region 
according to Conagua 2023, based on the annual average availability (AAA) as defined by the 
NOM-011-CONAGUA-2015. This standard specific the methodology for calculating groundwater 
availability through a balance of recharge (R), committed natural discharge (CND), and extraction 
volumes (EV). 
In the Figure 2, at showed a groundwater availability situation according the color, for example:  

• Chihuahua – Sacramento (dark red): Indicates a high deficit, a negative availability 
approximately –65.89 hm³/year. 

• Tabalaopa – Aldama (red): Shows a negative availability around –59.24 hm³/year. 
• El Sauz - Encinillas (orange): Also shows a negative availability around to  

-58.14068 hm³/year. 
• Aldama – San Diego (light orange): Moderate deficit with availability near to  

–26.87 hm³/year. 

• Villalba (pink): Slightly less stressed with availability near to –4.17 hm³/year. 

2. Methodology 

Advanced Artificial Intelligence (AI) integration models, including recurrent neural networks (RNNs) 
like Long Short-Term Memory (LSTM) and machine learning algorithms such as XGBoost, has 
significantly improved in prevention water scarcity events in Chihuahua City. These models are 
they proven on historical data sets taking into account temperature, precipitation, streamflow, and 
piezometric levels, generating projections that adapt to emerging climatic and anthropogenic 
patterns [9,10]. One of the key strengths of these approaches lies in their ability to identify early 
signals of aquifer stress and surface water deficits. By detecting subtle shifts in recharge dynamics 
and consumption patterns, they support the timely implementation of mitigation strategies. For 
instance, ensemble models combining LSTM with convolutional layers or attention mechanisms 
have achieved high accuracy in drought prediction, outperforming conventional models in both 
spatial and temporal resolution [11,12]. 
Beyond forecasting, these tools contribute to operational optimization. Algorithms can define 
efficient water redistribution routes, adjust pressure zones, and prioritize service areas based on 
consumption history and infrastructure vulnerability. Pilot implementations have reported 
reductions in water losses ranging from 14% to 22%, particularly in urban districts with aging 
networks. 
Moreover, decision support systems enhanced by machine learning are increasingly used to 
visualize hydrological scenarios in real time. These platforms integrate geospatial data, alerts, and 
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predictive simulations, facilitating coordinated responses among agencies. Studies have shown 
that such systems improve institutional readiness and foster collaborative governance, especially 
when combined with explainable AI frameworks that clarify model outputs for non-technical 
stakeholders [13,14]. 
In the context of climate change, models are being calibrated to reflect projected increases in 
temperature and reductions in recharge rates. For example, simulations for semi-arid basins 
suggest a potential rise of +2.4 °C and a 38% decrease in aquifer replenishment, underscoring the 
urgency of adaptive planning. In summary, the integration of advanced machine learning 
techniques into hydrological modeling not only enhances predictive capacity but also strengthens 
institutional decision-making and public policy formulation. Future research should explore hybrid 
approaches that combine physical models with data-driven algorithms, ensuring both accuracy and 
interpretability in water resource planning.   

3. Results and Discussion 

3.1 Surface water: Río Conchos 3 Basin Analysis 

The Río Conchos 3 basin, spanning an area of 6,508 km², revealed a negative surface water 
availability of –6.37 hm³/year in the base 2020 Study scenario, classifying it as a basin "without 
availability." This condition reflects a significant imbalance between the committed downstream 
volume (251.17 hm³) and the available runoff (244.8 hm³). This deficit is further exacerbated by 
registered extractions (53.6 hm³) and limited returns (57.7 hm³).  

Table 1: surface Availability water at Rio Conchos 3 Basin According to DOF 2020 

Parameter Value Unit 

Area 6,508.00 km² 

Available Runoff (Ab) 244.8 hm³/year 

Committed Volume Downstream (Rxy) 251.17 hm³/year 

 
Different hydrological models present varying projections for the basin's future water availability 
according to Bravo-Jácome et al., 2025 [15]: 
TURC Model: Application of the TURC model projects a significantly improved availability of 
2,007.59 hm³/year by 2034, suggesting a more favorable outlook under certain climatic conditions. 
Runoff Coefficient (RC) Method: In contrast, RC method estimates a more severe decline, with an 
availability of –13.34 hm³/year, reinforcing the risk of water stress under conservative scenarios.  
 

Table 2: Different hydrological models present varying projections for the basin's future water availability 

Basin 
Deficit (D) 2020 

Study 
(hm³/year) 

Deficit (D) 2034 
TURC Model 
(hm³/year) 

Deficit (D) 2034 
Runoff Coefficient (RC) Method 

(hm³/year) 

Río Conchos 3 -6.37 2007.59 -13.34 

 
These discrepancies between modeling methods highlight the basin's sensitivity to climatic 
variations and land-use changes. They underscore the critical need for implementing adaptive 
management policies and continuous monitoring to ensure sustainable water resources in the face 
of uncertainty. 

3.2 Forecasting Monthly Precipitation Using LSTM 

LSTM neural networks are deep learning architectures designed to learn from sequential data. In 
this study, monthly precipitation records from Rio Conchos 3 Basin were preprocessed using: 
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• Imputation of missing values  

• Rolling statistics and lag features  

• Robust scaling to mitigate outlier influence  
Monthly precipitation records (1982–2018) were preprocessed using imputation of missing values, 
rolling statistics, lag features, and robust scaling. An LSTM neural network was trained using five-
fold time series cross-validation. The model achieved: 

• Mean Absolute Error (MAE): 73.59 mm 

• Coefficient of Determination (R²): 0.29 
Despite moderate R², the model effectively captured transitions from normal rainfall to prolonged 
dry periods. Forecasts for 2019–2033 suggest stable precipitation through 2028, followed by a 
severe drought from 2029 to 2032. These projections support strategic water rationing, 
infrastructure reinforcement, and drought contingency planning. 

3.3 Time Series Decomposition 

The precipitation series was decomposed into: 
• Observed Component: High interannual variability with peaks (2004–2006) and dips (early 

1980s, mid-1990s) 
• Trend Component: Declining trend until mid-1990s, followed by gradual recovery 
• Seasonal Component: Stable oscillations around zero, indicating consistent seasonal 

cycles 
This decomposition supports the use of periodic models like RNNs and enhances interpretability 
for water resource planning. 
The model was evaluated using five-fold time series cross-validation. Performance metrics yielded 
a Mean Absolute Error (MAE) of 73.59 mm and a coefficient of determination (R²) of 0.29. Despite 
moderate R², the LSTM model successfully captured interannual variability and key shifts from 
normal precipitation to prolonged dry periods. 
The forecast (2019–2033) indicated stable rainfall through 2028, followed by severe drought from 
2029 to 2032. These predictions were translated into actionable recommendations—such as water 
rationing policies and infrastructure readiness—to enhance drought resilience.   
 

 

Fig. 3. Precipitation time series AI model results for Rio Conchos 3 Basin 

Figure 3 breaks down the precipitation time series into three key components: 
a). Observed Precipitation  

• Displays the raw annual precipitation values. 
• Shows high interannual variability, with peaks around 2004–2006 and dips in the early 

1980s and mid-1990s. 
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• The fluctuations suggest alternating wet and dry years, typical of semi-arid basins 
influenced by regional climate patterns. 

b). Trend Component  
• Reveals the long-term direction of the data. 
• Initially, there's a declining trend from 1980 to the mid-1990s, followed by a gradual 

recovery toward 2015. 
• This may reflect broader climatic shifts or land-use changes affecting rainfall patterns over 

time. 
c). Seasonal Component  

• Captures recurring patterns or cycles in the data. 
• The seasonal variation is relatively stable and symmetric, oscillating around zero. 
• This suggests that while the magnitude of precipitation changes year to year, the seasonal 

rhythm remains consistent, likely tied to predictable wet and dry seasons. 
• Any remaining variability not explained by the trend or seasonality. 
• These are important for identifying anomalous years or extreme events that deviate from 

expected patterns. 
• The decomposition confirms that precipitation at Río Conchos 3 Basin is highly variable, but 

with a recovering trend post-1995. 
• The stable seasonal component supports the use of models that assume periodicity, like 

RNNs. 
• Understanding these components helps improve forecasting accuracy and supports 

adaptive water management policies. 
We can observe at Figure 4; precipitation series was decomposed into: 
• Observed Component: High interannual variability with peaks (2004–2006) and dips (early 

1980s, mid-1990s) 
• Trend Component: Declining trend until mid-1990s, followed by gradual recovery 
• Seasonal Component: Stable oscillations around zero, indicating consistent seasonal 

cycles 
This decomposition supports the use of periodic models like RNNs and enhances interpretability 
for water resource planning. 
 

 

Fig. 4. Precipitation trends and variability at Rio Conchos 3 Basin 
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Fig. 5. Precipitation cross-validation prediction vs actual at Rio Conchos 3 Basin 

 

Fig. 6. Precipitation future prediction at Rio Conchos 3 Basin 

• In several points, the predicted values closely follow the real ones, indicating the model 
captures the general trend. 

At Figure 7 we can observe there are some sample indices where the prediction deviates 
noticeably from the actual temperature—this could be due to: 

o Sudden climate anomalies 
o Limited training data for extreme years 
o Lag effects not captured by the model 

Also, it visually confirms that the model performs reasonably well but may benefit from: 
o Including additional predictors (e.g., NDVI, humidity, wind) 
o Using lagged features or temporal smoothing 
o Trying a sequential model like RNN or LSTM for better temporal learning 
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Fig. 7. Temperature Maximum prediction at Rio Conchos 3 Basin 

3.4 Groundwater: El Sauz-Encinillas Aquifer 

The Sauz-Encinillas aquifer (0807), is situated in the Chihuahua state central portion, in Mexico. It 
spans latitudes 28°53'31” N to 29°39'41” N and longitudes 106º09’35” W to 106°43´27” W, covering 
an area of 2,743 km². It shares its northern boundary with the Laguna de Tarabillas and Flores 
Magón-Villa Ahumada aquifers; its eastern boundary with Laguna de Hormigas and Laguna El 
Diablo; its southern boundary with Chihuahua Sacramento and Alto Río San Pedro; and its 
western boundary with Santa Clara and Cuauhtémoc, all within Chihuahua state. The aquifer 
system is characterized by heterogeneity and anisotropy. It is predominantly unconfined, though 
local semi-confined conditions exist due to the interdigitation of low-permeability strata. 
Geologically, it is situated within a tectonic graben filled with sediments of varying grain sizes. 
These alluvial sediments reach a maximum thickness of 800 m, thinning towards the slopes of the 
surrounding mountain ranges where alluvial fans are present. At greater depths, fractured volcanic 
rocks and limestones exhibit secondary permeability, forming an unexploited unit with evidence of 
its presence derived from mining operations, primarily in adjacent aquifers. 

Hydraulic Parameters 

As part of a 2009 study, eight pumping tests were conducted, encompassing both drawdown and 
recovery phases, with durations ranging from 4 to 12 hours. Interpretation of these tests, utilizing 
various methods, yielded transmissivity values varying from 24 to 455 m²/day (0.3 to 5.3 x 10⁻³ 
m²/s), with an average of 191 m²/day (2.2 x 10⁻³ m²/s). Considering an average saturated 

thickness of 170 m, this translates to an average hydraulic conductivity of 1.1 m/day (1.3 x 10⁻⁵ 
m/s). For the storage coefficient (S) in the central valley area, the average value was determined to 
be 7.1 x 10⁻⁴. Specific yield (Sy) values ranged from 0.06 to 0.21 [8]. 

Static Water Level Elevation 

In the context of Mexico’s National Water Commission (CONAGUA), piezometric levels represent 
measurements of groundwater pressure within an aquifer, typically obtained through monitoring 
wells or piezometers. These readings are essential for analyzing subsurface water dynamics and 
ensuring sustainable groundwater management. You can explore official data through CONAGUA’s 
Piezometric Measurements Portal https://sigagis.conagua.gob.mx/rp20/ [8]. Groundwater level 
analysis in the region is based on data collected between 2001 and 2009. In 2009, static water 
level depths varied significantly across the aquifer: 

Range of Depths: 5 to 120 meters 

Shallowest Levels: Found near Encinillas and Ejido Nuevo Delicias, located in the central and 
northern zones of the aquifer 
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Southern Sector: Depths ranged from 20 to 120 meters, with topography playing a key role in the 
deeper measurements 

El Sauz–Chihuahua Aqueduct Zone: Near the well fields supplying this aqueduct, depths ranged 
from 10 to 80 meters 

These variations reflect both natural geological influences and anthropogenic pressures, 
underscoring the importance of continuous monitoring for effective water resource planning. The 
static water level elevations in 2009 (Table 3) ranged from 1515 to 1570 meters above sea level 
(masl), showing no significant spatial or value change from previous configurations. Elevations 
generally increased topographically from the valley towards the mountain foothills. A more 
pronounced cone of depression was observed in the southern portion of the aquifer, indicative of 
concentrated water extraction. 

Static Water Level evolution  

Based on piezometric data from 2001 and 2009, the evolution of the static water level revealed 
average annual drawdowns varying from 0 to 3 m. As expected, the most significant drawdowns 
were recorded in the southernmost part of the aquifer. This area exhibits a distinct cone of 
depression, directly attributed to the concentration of wells extracting potable water for Chihuahua 
City.  
Table 3 details the annual storage change calculation for the El Sauz-Encinillas aquifer from 2001 
to 2009. 
 

Table 3: Annual storage change calculation for the El Sauz-Encinillas aquifer from 2001-2009 year 

Drawdown (m) 
Area 
(km²) Sy 

∆V(S)  
(hm³/year) 

-24.0 28.3 0.2 -135.7 

-16.0 70.0 0.2 -224.1 

-8.0 33.4 0.2 -53.4 

-5.6 12.9 0.2 -14.5 

-4.0 90.5 0.2 -72.4 

-4.0 35.1 0.2 -28.0 

TOTAL 270.2 TOTAL -528.1 

Annual Average   -66.0 

 
According to table 3 storage net change is ∆VS = –66.0 hm³/year. 
Table 3 shows various segments of the aquifer experiencing different drawdown levels and their 
corresponding storage changes. The overall picture indicates a significant negative change in 
groundwater storage over this nine-year period: 
The cumulative net storage change for the entire analyzed area (270.2 km²) is -528.1 hm³/year. 
The average annual net change in storage for the aquifer is a concerning -66.0 hm³/year. This 
negative value directly indicates that the aquifer is experiencing depletion, meaning more water is 
being extracted or lost than is being recharged annually. 

3.5 Groundwater Depletion Detected by GRACE 

The integrated methodology, combining Ai-based forecasting with satellite and field-based 
hydrological monitoring, has been specifically applied to the El Sauz-Encinillas aquifer to address 
its complex water management challenges. Long Short-Term Memory (LSTM) neural networks are 
used to predict long-term rainfall trends, offering insights into future precipitation patterns relevant 
to the aquifer's recharge. Simultaneously, GRACE satellite data provides crucial information on 
terrestrial water storage variations over the El Sauz-Encinillas aquifer, revealing a marked declining 
trend in water storage with persistent negative anomalies. These GRACE-derived negative trends 
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coincide with the predicted reduction in precipitation by the LSTM model, validating concerns over 
future water scarcity in the aquifer. This combined approach quantifies aquifer stress and 
enhances drought anticipation, thereby supporting adaptive management strategies for the 
sustainable water governance of El Sauz-Encinillas. 
Figure 8 illustrates the terrestrial water storage anomaly in the El Sauz–Encinillas aquifer between 
2003 and 2017, based on GRACE satellite data. The y-axis represents liquid water equivalent 
thickness anomalies in centimeters (cm), ranging from approximately –10 cm to +8 cm, while the x-
axis displays the time series with monthly markers. The data line, lwe_thickness_csr, reflects 
fluctuations in subsurface water storage. 
 

 

Fig. 8. GRACE satellite-derived terrestrial water storage anomaly in the El Sauz–Encinillas aquifer (2003–
2017) 

A pronounced downward trend is evident, particularly from 2012 onward, indicating sustained 
groundwater depletion. These negative anomalies are consistent with intensified extraction and 
reduced natural recharge, especially during dry years. Seasonal oscillations are visible, with short-
term recoveries followed by deeper deficits—suggesting that wet-season recharge is insufficient to 
offset withdrawals and evaporation losses. 
The most severe anomalies occurred between 2013 and 2015, likely linked to compounded 
drought conditions and increased water demand. This period underscores the aquifer’s 
vulnerability to both climatic variability and anthropogenic pressures. 
The persistent negative anomalies have significant implications for aquifer sustainability, 
agricultural planning, and ecological resilience. These data are critical for hydrological modeling 
and can be used to: 

• Adjust recharge estimates 

• Validate groundwater simulations 

• Support early warning systems for water stress 
The GRACE-derived trends align with LSTM model predictions of reduced precipitation, reinforcing 
concerns over future water availability in the region. 
Groundwater Table Measurements from Wells Monitoring  
Complementing the satellite data, historical well measurements from 1996 to 2012 across the El 
Sauz–Encinillas aquifer were analyzed using piezometric well records (Figure 9) obtained from 
CONAGUA’s official repository [8]. These measurements consistently show increasing water table 
depths, confirming the depletion observed in GRACE data. 
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Fig. 9. Piezometric level well Behavior 

Table 4 summarizes selected observations from monitoring wells, highlighting spatial variability in 
depletion rates due to differences in geology, recharge conditions, and extraction intensity. 

 

                     Table 4: Well, piezometric levels from Sauz-Encinillas aquifer (1996-2012 year) 

Well Curb Elevation 

19
96

 

19
97

 

19
98

 

19
99

 

20
00

 

20
01

 

20
02

 

20
03

 

20
04

 

20
05

 

20
06

 

20
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20
11

 

20
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112 1585.65   57.73               

125 1656.73  94 91.85           98.71    

136 1593.85 33.48  66.73               

240 1549.95  17.89 12.1           12.1   29.7 

261 1552.45   17.85   18.7        18.3    

291 1528.25  16.43 4.62   4.15         4.9  4.2 

296 1525.20 3 3.78 3.42   3.9       4.13 6.3 4.01   

297 1530.95 2 3.12 3.5   3.56       3.05 2 3.76   

312 1544.70 4.59 3.34 4.75   37.33       6.3  6.61 7.2 7.5 

320 1610.10 61.68  60.18   69.67       74.58 75.96 76.18   

322 1561.30   23.9   24.64       23.06 23.98 23.95   

331 1541.20 61.5 6.8 7.32   9.16       12.35 12.97 13.14 14.1 14.65 

335 1538.05 1 2.1 2.3           7.76    

337 1545.98 8.45  10   11.11        14.8 14.06   

338 1585.40 40.5  41.45   40.95       46.18  46.54   

339 1542.30 13.06 12.7 12   13.52         15.87   

351 1529.15 7.89 7.88 8.64   8.46       9.4  9.8 9.9 10.1 

353 1529.30 8.6 8.89 8.7   9.45       9.4 8.8 9.5 9.8 10.21 

360 1562.20 13.8 13.95 13.63   15.75       20.8  20.52 22.1 23.34 

362 1534.80 5.32  3.28   37.08        4.67 4.79   

363 1535.70 2.6  2.4   3.81         1.1   

374 1659.05   97.22               

44 1568.15   28.94   46.54        53.85 56.52   

471 1528.68  10.43 10.68   11.09       12.02 31.25 12.01 13.5  
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Well Curb Elevation 
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490 1605.40   53.7   73.77        49.02 49.11 59 59 

500 1596.95 54 53.8 54.38   55.48       59.05  59.25   

306 1601.29  55.46 56.92   30.46         61.32 61.3 64.1 

513 1543.36  4.85 7.84   9.51        9.18 9.91   

76 1601.30 82.53 76.4 74.2               

87 1562.98  13.35 12.29   14.62        13.35  18.96 19.75 

9 1555.78 15.86 17.1 13.9   15.3        17.3 17.76 22.1 22.3 

94 1577.60 37.7 30 33.28               

685 1609.80 69.08  69.92   52.01         72.68   

49 1543.30 20.65 22.35 20.16   34.1         32.74   

El Tordo 1618.02   67.13   31.3            

420 1528.05   2.3   30.15            

 
Together, the GRACE satellite anomalies and field-based piezometric measurements present a 
consistent and compelling narrative of long-term groundwater depletion in the El Sauz–Encinillas 
aquifer. This convergence of evidence highlights the urgent need for adaptive management 
strategies and continuous hydrological monitoring. 
Figure 9, which displays GRACE-derived terrestrial water storage anomalies from 2003 to 2017, 
offers independent, satellite-based validation of the depletion trend. This figure reveals a 
pronounced decline in liquid water equivalent thickness, with persistent negative anomalies—
particularly from 2012 onward—some exceeding –8 cm. These anomalies are indicative of 
intensified groundwater extraction and insufficient natural recharge. Satellite observations align 
closely with field data presented in Table 4, which documents negative annual storage changes 
between 2001 and 2009. This cross-validation between remote sensing and in-situ measurements 
reinforces the severity of aquifer stress and underscores the reliability of the findings across 
different methodologies and temporal scales. 
Moreover, the GRACE anomaly trends coincide with precipitation reductions forecasted by the 
LSTM model, further substantiating concerns over future water scarcity. The integration of satellite 
data, machine learning forecasts, and field measurements provides a robust framework for 
understanding aquifer dynamics and guiding sustainable water resource planning in the region. 

4. Conclusions 

This paper demonstrates the valuable potential of integrating advanced artificial intelligence (AI) 
with both satellite and field-based hydrological data to enhance water resource management in 
semi-arid regions. The detailed  analysis of the El Sauz-Encinillas aquifer and the Río Conchos 3 
basin offers key insights into current and future water availability challenges. 
This finding shows that Long Short-Term Memory (LSTM) models are effective in anticipating 
drought conditions and forecasting rainfall variability. This predictive capability is a useful tool for a 
more proactive approach to water management. 
Data from the GRACE satellite provides strong evidence of long-term groundwater depletion. For 
the El Sauz-Encinillas aquifer, GRACE data from 2003–2017 revealed a clear declining trend in 
water storage. This aligns with and is reinforced by field data, which showed an average annual 
storage loss of -66.0 hm³/year for the 2001-2009 period. The confirmation of GRACE observations 
with historical well measurements further validates this evidence. Within the Río Conchos 3 basin, 
hydrological modeling confirmed the methodologies used. The basin faces a surface water deficit, 
and future projections show significant variability depending on the model used. These 
discrepancies highlight the basin’s sensitivity to climate and land-use changes. AI models proved 
essential for predicting periods of low water availability in advance, identifying vulnerable urban 
areas, and optimizing operational responses. 
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The synergy between predictive analytics and physical hydrological data provides a robust toolkit 
for building resilience to climate impacts. We recommend that future research explore integrating 
additional factors such as evapotranspiration, land cover, and socio-economic indicators for more 
holistic and effective planning. 
Scaling these successful models to other cities in northern Mexico and investing in the necessary 
digital infrastructure and personnel training are suggested next steps. The widespread adoption of 
AI-powered tools holds the potential to significantly improve water security across arid and semi-
arid landscapes. This integrated approach is essential for building resilient water infrastructure, 
guiding effective policy, and ensuring sustainable water availability in regions facing climate 
uncertainty. 
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