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Abstract: Convective precipitation poses significant hydrometeorological risks in the Peñitas River Basin, 
where short-duration, high-intensity rainfall events often trigger flash floods and landslides. This study 
introduces a novel empirical index—the Convectivity Factor (CF)—to spatially characterize convective 
susceptibility using high-frequency precipitation data from CFE’s automated weather stations and 
topographic inputs from INEGI’s Digital Elevation Model. The CF, defined as the ratio of maximum 1-hour to 
24-hour precipitation, was calculated using annual historical maxima and mapped via three interpolation 
techniques: Inverse Distance Weighting (IDW), Kriging, and CoKriging. CoKriging, which incorporates 
elevation as a secondary variable, produced the most topographically coherent results. The resulting CF 
maps identify zones of elevated convective risk, supporting rainfall-runoff modeling and infrastructure 
planning in data-scarce regions. Though empirical, the CF provides a scalable tool for adaptive water 
management. Future research should integrate radar-derived instability indices and validate CF maps 
against observed extreme events.  
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1. Introduction 

Convective precipitation is a primary driver of hydrological extremes, particularly in vulnerable 
regions such as the Peñitas Watershed in southern Mexico. Localized and intense rainfall events 
frequently trigger flash floods, landslides, and severe soil erosion. These phenomena are 
becoming increasingly frequent and intense due to climate change, highlighting the urgent need for 
diagnostic tools that can spatially characterize convective susceptibility using high-resolution, 
accessible data sources [1-2]. 
A dramatic illustration of these risks occurred on the night of November 4, 2007, when a massive 
landslide released approximately 48 million cubic meters of rock and mud over an 80-hectare area. 
This event created a natural dam across the Grijalva River—one of Mexico’s largest—between the 
Peñitas (downstream) and Malpaso (upstream) dams. The resulting barricade measured 80 meters 
in height, 800 meters in length, and 300 meters in width. The rural town of San Juan de Grijalva, 
situated along the riverbank, was devastated by the moving mass and the wave-induced flooding 
that followed. Tragically, 25 lives were lost. Using remote sensing and geographic information 
systems (GIS), this study contextualizes the landslide within the broader Grijalva River Watershed 
and links it to abnormal precipitation patterns observed in late October and early November 2007. 
To address the need for spatial diagnostics of convective risk, this paper introduces the 
Convectivity Factor (CF)—a novel empirical index designed to map the annual frequency of 
convective events across the Peñitas Watershed. The CF integrates daily precipitation thresholds 
derived from the Comisión Federal de Electricidad (CFE)’s automated weather station reanalysis 
dataset. This approach offers a computationally efficient and scalable method for identifying 
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regions prone to convective activity. 
Although empirical, the CF provides a robust foundation for future enhancements in convective 
hazard diagnostics. Its reliance on open-access reanalysis data ensures broad applicability, 
especially in regions with sparse observational networks. By bridging the gap between large-scale 
climate datasets and localized hazard mapping, the CF contributes to adaptive strategies for 
managing convective risks in a changing climate. 
Beyond climatological analysis, the CF has practical implications for hydrological modeling. CF 
maps support the estimation of design hyetographs—critical tools for rainfall-runoff simulations and 
hydraulic infrastructure planning. These maps are particularly valuable in data-scarce regions, 
enabling accurate modeling of short-duration rainfall events using daily records [3-4-5]. 
In areas with dense rainfall monitoring networks, CF maps enhance the regionalization of 
precipitation events and improve the reliability of hydrological models. In Mexico, Baeza (2007) [5] 
developed a Convectivity map that has been instrumental in estimating intensity-duration-
frequency (IDF) relationships. Similarly, various authors [6-7] have advanced in hydrological 
modeling and water resources management through convection-based methodologies. 
These efforts underscore the value of developing Convectivity maps in countries with extensive 
measurement networks, optimizing both planning and response to extreme hydrometeorological 
events. 
In this paper, a Convectivity map for the Peñitas Watershed was developed by correlating 
maximum 1-hour precipitation with 24-hour totals. Nine automatic weather stations distributed 
across the basin provided precipitation records at 1-hour intervals. For each station, historical 
averages of maximum 1-hour and 24-hour precipitation were calculated, and the CF was derived 
accordingly. The Peñitas Watershed Digital Elevation Model (DEM), obtained from INEGI [8], was 
used as a reference for topographic adjustments.  
Three interpolation methods were applied to generate this map: 
Inverse Distance Weighting (IDW), Kriging and CoKriging, implemented in ArcGIS©, which also 
incorporated topographic data. 

2. Methodology 

This paper presents a robust framework for defining and mapping a novel Convectivity Factor (CF) 
across Peñitas Watershed, integrating reanalysis data, high-frequency precipitation records, and 
advanced spatial interpolation techniques. 

2.1 Study Area 

The Peñitas Watershed, located in southern Mexico, holds significant hydrological, ecological, and 
socio-economic importance. The Peñitas Dam, officially known as the Central Hidroeléctrica Ángel 
Albino Corzo, is a major hydroelectric facility on the lower Grijalva River. It has an installed 
capacity of 420 megawatts, contributing substantially to Mexico’s renewable energy supply. This 
Riverbasin is situated in one of the rainiest regions of Mexico, making it highly susceptible to 
extreme precipitation and runoff. This dam plays a vital role in regulating water flow and mitigating 
flood risks, especially in downstream areas like Tabasco, which have experienced severe 
inundations during extreme weather events. Due to its high rainfall and complex terrain, the 
Peñitas Watershed is a hotspot for convective precipitation, making it a valuable case study for 
climate impact assessments and hydrological modeling. Events like the 2007 landslide and 
subsequent flooding underscore the basin’s vulnerability to climate-driven hydrometeorological 
hazards. Flooding and landslides in the region have historically caused loss of life, displacement, 
and economic disruption, emphasizing the need for resilient infrastructure and early warning 
system [9]. 
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Fig. 1. Study site: Peñitas Watershed Location and their climatic Network. Source: Own design. 

2.2 Data Sources 

CFE’s automated weather stations reanalysis Data: Daily maximum precipitation data from 2005 to 
2025 year distributed across Peñitas Watershed provided 1-hour interval precipitation records, 
sufficient for calculating maximum 1-hour and 24-hour rainfall values.  
 
                                 Table 1: CFE’s automated weather station’s location and elevations. Source [10-11] 

Automated weather 
stations name 

Latitude Longitude Elevation 
Masl 

Date 

Aza-Pac 17.26 -        93.42 229.00 2005-09-06 to 2025-08-04 

Emiliano Zapata 17.22 -        93.34 382.00 2005-09-06 to 2025-08-04 

Presa Malpaso 17.18 -        93.60 200.00 2005-09-06 to 2025-08-04 

Ocotepec 17.23 -        93.15 200.00 2005-09-06 to 2025-08-04 

Peñitas Dam 17.44 -        93.46 53.00 2005-09-06 to 2025-08-04 

Romulo Calzada 17.35 -        93.55 119.00 2005-09-06 to 2025-08-04 

Sayula 17.40 -        93.33 51.00 2005-09-06 to 2025-08-04 

Tuneles de Juan de 
Grijalva 

17.36 -        93.42 123.00 2005-09-06 to 2025-08-04 

Tzimbac 17.23 -        93.41 200.00 2005-09-06 to 2025-08-04 

 
Digital Elevation Model (DEM): A 15x15 meters, download from INEGI [8] supporting topographic 
corrections and spatial interpolation. 
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2.3 Convectivity Factor Definition 

A convective day was empirically defined a criterion: 
• Daily precipitation > 0.1 mm 
The Convectivity Factor (CF), also referred to as Factor R, is calculated as shown in equation 1 [5]: 

𝑅 =
𝑃1ℎ

𝑃24ℎ
                                                                   (1) 

Where: 
• P1h: Maximum 1-hour precipitation 
• P24h: Total 24-hour precipitation 
This factor is valuable for estimating the intensity of short-duration rainfall from daily records, 
facilitating the development of design hyetographs for rainfall-runoff modeling and crucial for 
hydraulic infrastructure planning in data-scarce regions. 

2.4 Procedure for Convectivity Factor Calculation 

Procedure 1 was employed to obtain the Convectivity factor: 
Procedure 1: Annual Historical Maxima from nine automated weather stations elected automatic 
stations set across Peñitas Watershed was utilized. For each station, the annual historical 
maximum 1-hour and 24-hour precipitation values were calculated and then averaged. The 
Convectivity factor for each station was subsequently determined using Equation (1). 

2.5 Spatial Aggregation and Mapping 

Daily convective flags were aggregated over 365 days to compute annual Convectivity frequency 
for each grid point. Resulting Convectivity map visually represents convective number days per 
year, generated using ArcGIS and Python-based visualization tools. 
Spatial interpolations were performed using open-source software tools. Inverse Distance 
Weighting (IDW) and Kriging interpolations were applied in QGIS, while CoKriging was employed 
in ArcGIS©. Spatial interpolation generates raster cell values from known points, applicable to 
geographical variables like elevation or precipitation. 
Inverse Distance Weighting (IDW): This deterministic technique assigns values to unsampled 
locations by averaging known values in their vicinity, with closer points exerting greater influence. It 
is widely used for its simplicity when spatial correlation structure is unknown. The IDW method 
general expression appears in equation 2. 

𝑧(𝑥0) =
∑

𝑍(𝑥𝑖)

𝑑(𝑥0,𝑥𝑖)𝑝
𝑛
𝑖=1

∑
1

𝑑(𝑥0,𝑥𝑖)𝑝
𝑛
𝑖=1

                                                              (2) 

Where: 
z(x0): Estimated value 
Z(xi) Known values 
d(x0, xi): Distance between points 
p: Power parameter controlling influence 
This method is widely used for its simplicity and effectiveness in contexts where information on the 
spatial structure of the phenomenon is not available [12-14]. 
Kriging: A geostatistical technique that considers not only distance but also the spatial correlation 
structure modeled by a variogram. It provides an optimal and unbiased estimation under certain 
stationarity conditions, allowing for uncertainty prediction quantification. The simple Kriging basic 
form appears in equation 3. 

𝑍∗(𝑥)  =  𝑚 +  ∑ 𝜆𝑖[𝑍(𝑥𝑖) − 𝑚]𝑛
𝑖=1                                             (3) 
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Where: 
𝑍∗(𝑥) Estimated value 
𝑚 Mean of the random field 

𝜆𝑖. Weights from variogram equations 
 

CoKriging: A Kriging extension of Esri [15] that incorporates auxiliary variables spatially correlated 
with the principal variable (in this case we applied elevation with precipitation) to enhance 
estimation accuracy, particularly with limited primary variable sampling. While more complex to 
implement, CoKriging can yield improved results when relevant auxiliary variables are available. 
This method is ideal when sufficient information is available to model spatial dependence, and it 
allows for quantifying the uncertainty of predictions [16-17]. 
The ArcGIS program offers the option of adding complementary tools. In this case, Cokriging 
interpolation was considered, as this procedure allows for interpolation of functions of two or more 
variables. Specifically, in this analysis, it was important to consider the topography of the selected 
stations, so the interpolation was based not only on precipitation but also on station elevation. 
CoKriging interpolation is performed using equation 4. 

𝒁∗(𝒙)  =   ∑ 𝝀𝒊𝒁𝟏(𝒙𝒊) + ∑ 𝝁𝒋𝒁𝟐(𝒙𝒋)𝒎
𝒋=𝟏

𝒏
𝒊=𝟏                                        (4) 

Where: 
𝒁𝟏 Primary variable (precipitation) 

𝒁𝟐   Secondary variable (elevation) 
𝝀𝒊y 𝝁𝒋. Weights from autocorrelation and cross-correlation 

Although more complex to implement, CoKriging can offer better results when relevant auxiliary 
variables are available, such as altitude in precipitation studies [18]. CoKriging was implemented in 
ArcGIS©, enhancing spatial coherence by integrating topographic data. 

3. Results and Discussion 

This section presents the results derived from mapping the Convectivity factor (CF) across Peñitas 
Watershed using two distinct methodologies, followed by a comprehensive spatial patterns 
discussion, hydrometeorological implications, and the performance of various interpolation 
techniques. In Table 2 it can be observed calculated values for each station. 

 

Table 2: CFE’s automated weather station’s results for Convectivity Factor 

Automated weather stations name R Convectivity Factor 

Aza-Pac 0.53 

Emiliano Zapata 0.51 

Presa Malpaso 0.40 

Ocotepec 0.57 

Peñitas Dam 0.51 

Romulo Calzada 0.57 

Sayula 0.51 

Tuneles de Juan de Grijalva 0.54 

Tzimbac 0.54 

 
It is worth noting that when spatial interpolation is performed at the national scale, the Convectivity 
map developed by Baeza (2007) indicates an approximate average value of 0.45 for the region 
encompassing the Peñitas Watershed. This value highlights the basin’s pronounced susceptibility 
to convective precipitation, consistent with its location in one of the rainiest regions of Mexico. 
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3.1 Convectivity Factor Mapping: Procedure 1 

Initial mapping of the Convectivity factor (CF), using the Inverse Distance Weighting (IDW) 
interpolation method and data from a sample of nine selected automated weather stations. The 
interpolation was performed using the Inverse Distance Weighting (IDW) method to capture 
regional variations in convective susceptibility. CF values were classified into three distinct ranges: 
low (green: 0.402–0.474), moderate (yellow: 0.475–0.529), and high (red: 0.530–0.571). These 
classifications delineate zones with varying degrees of convective activity, with red areas indicating 
elevated risk of convective precipitation events. This mapping provides a valuable tool for 
identifying regions potentially vulnerable to intense rainfall, flash flooding, and related 
hydrometeorological hazards. 
 

 

Fig. 2. Peñitas Watershed Convective factor map using IDW interpolation. Source: Own design 

Figure 3 illustrates the spatial distribution of the Convectivity Factor (CF) across the Peñitas 
Watershed using the Kriging interpolation method. This geostatistical approach provides a more 
nuanced representation of spatial autocorrelation compared to deterministic methods like IDW. The 
CF values are categorized into three ranges: low (green: 0.402–0.474), moderate (yellow: 0.475–
0.529), and high (red: 0.530–0.571), allowing for the identification of zones with varying convective 
potential. The map includes the boundaries of the Peñitas Watershed and the locations of CFE’s 
automated weather stations, with key geographic references such as Presa Malpaso, Emiliano 
Zapata, and Tzimbac clearly labeled. The inclusion of a compass rose and coordinate grid ensures 
spatial orientation and georeferencing. Compared to the IDW-based map (Figure 2), the Kriging 
interpolation reveals smoother transitions and potentially more reliable estimates in areas with 
sparse data, enhancing the understanding of convective dynamics in the region. 
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Fig. 3. Peñitas Watershed Convective factor map using Kriging interpolation. Source: Own design 
 

Figure 4 displays the spatial distribution of the Convectivity Factor (CF) across the Peñitas 
Watershed using the Cokriging interpolation method, which integrates elevation as a secondary 
variable to enhance spatial prediction accuracy. By leveraging the covariance between CF and 
elevation, this geostatistical technique improves the interpolation in areas with limited primary data. 
The CF values are classified into three ranges—low (green: 0.402–0.474), moderate (yellow: 
0.475–0.529), and high (red: 0.530–0.571)—highlighting zones with varying convective potential. 
The map includes the boundaries of the Peñitas Watershed (outlined in purple), the locations of 
CFE’s automated weather stations (blue dots), and key geographic references such as Presa 
Peñitas, Sayula, and Ocotepec. Compared to IDW and Kriging methods, Cokriging offers a more 
refined spatial representation by accounting for topographic influence, which is particularly relevant 
in mountainous or elevation-sensitive region 
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Fig. 4. Peñitas Watershed Convective factor map Cokriging interpolation. Source: Own design 

3.2 Convectivity Spatial Patterns 

The spatial distribution of the Convectivity Factor (CF) across the Peñitas Watershed reveals 
distinct regional patterns influenced by both meteorological inputs and topographic variability. 
Using three interpolation methods—IDW, Kriging, and Cokriging—the CF maps consistently 
identified zones of elevated convective activity concentrated in the central and southeastern 
portions of the basin. These areas, marked in red (CF > 0.530), suggest a higher likelihood of 
intense convective precipitation events. While IDW provided a straightforward visualization of CF 
gradients, Kriging offered smoother transitions and better spatial continuity, especially in regions 
with sparse data. The Cokriging method, incorporating elevation as a covariate, further refined the 
interpolation by capturing terrain-driven influences on convective dynamics. This approach 
revealed subtle shifts in CF hotspots, particularly in elevated zones where orographic effects may 
enhance convective processes. Overall, the spatial patterns suggest that Convectivity is not 
uniformly distributed across the basin, but rather modulated by a combination of atmospheric and 
geomorphological factors. These insights are critical for identifying vulnerable zones and guiding 
localized hydrometeorological assessments. 

3.3 Convectivity and Hydrometeorological Risk 

High Convectivity values are closely associated with increased hydrometeorological risk, 
particularly in regions prone to intense rainfall, flash flooding, and slope instability. The CF maps 
generated through spatial interpolation highlight several high-risk zones within the Peñitas 
Watershed, where convective activity exceeds critical thresholds. 
Areas with CF values above 0.530—especially those identified through Cokriging—correspond to 
regions with steep terrain, limited drainage infrastructure, and historical records of extreme weather 
events. These zones are likely to experience rapid runoff, soil erosion, and potential landslides 
during convective storms. Moreover, the proximity of critical infrastructure, such as Presa Peñitas 
and Presa Malpaso, to high CF regions underscores the importance of integrating Convectivity 
analysis into reservoir management and emergency planning. 
By linking Convectivity patterns with hydrometeorological hazards, this study provides a framework 
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for proactive risk mitigation. The results support the development of early warning systems, 
targeted monitoring strategies, and adaptive land-use planning to reduce vulnerability and enhance 
resilience in the basin. 

3.4 Limitations and Future Research 

Despite the methodological robustness of the proposed Convectivity framework, several limitations 
warrant attention are explained below. 
Regarding the data coverage constraints, the spatial interpolation relied on a limited number of 
automated weather stations, which may affect CF accuracy in underrepresented zones. 
Temporal Aggregation Bias takes place because using annual historical maxima may obscure 
intra-annual variability and miss short-term convective anomalies. 
While elevation was integrated via CoKriging, the 15×15 m DEM may not fully capture 
microtopographic influences on convective dynamics and that leads to a DEM Resolution 
Sensitivity. 
The CF, while practical, lacks direct linkage to atmospheric instability indices such as CAPE or 
lifted index, limiting its physical interpretability. 
 
Future Research Directions worth mentioning are described next. 
 
Integration with Atmospheric Indices with the combination of CF with radar-derived convective 
parameters (e.g., CAPE, reflectivity) to enhance physical realism. 
Multi-source Data Fusion with the Incorporation of satellite-based rainfall products (e.g., GPM, 
CHIRPS) to improve spatial resolution and temporal granularity. 
Validation Against Extreme Events helped with Cross-reference CF hotspots with historical flood 
and landslide records to assess predictive reliability. 
Machine Learning Enhancements with the exploration of hybrid models that fuse geostatistics with 
supervised learning for dynamic Convectivity mapping. 

4. Conclusions 

This paper presents a novel Convectivity index (CF) tailored to the Peñitas Watershed, offering a 
computationally efficient method for identifying regions prone to convective precipitation. By 
leveraging high-frequency rainfall data and integrating elevation through CoKriging, the resulting 
CF maps reveal spatial patterns aligned with known hydrometeorological risks. 
The comparative analysis of IDW, Kriging, and CoKriging underscores the value of geostatistical 
methods in enhancing spatial coherence, particularly when auxiliary variables are available. The 
CF values—ranging from 0.40 to 0.57—suggest that a significant portion of daily rainfall is 
concentrated in short-duration events, reinforcing the need for refined hyetograph design and flood 
modeling. 
While empirical, the CF framework provides a foundation for scalable hazard diagnostics and 
supports climate adaptation strategies in data-scarce regions. Future enhancements should focus 
on integrating atmospheric instability metrics, validating against observed events, and expanding 
the framework to other convective-prone basins. 
The spatial patterns observed for 2021 year demonstrate strong contrasts that align with known 
climatological and hydrological risks in Peñitas Watershed. While empirical in nature, the 
Convectivity factor serves as a robust baseline for the continued development of advanced 
convective hazard diagnostics, particularly through the utilization of open reanalysis datasets. For 
future research, it is recommended to validate these maps against observed extreme events and to 
refine the treatment of stations with missing data to further enhance the estimations accuracy. 
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